Answer:
Because each element has an exactly defined line emission spectrum, scientists are able to identify them by the color of flame they produce. For example, copper produces a blue flame, lithium, and strontium a red flame, calcium an orange flame, sodium a yellow flame, and barium a green flame. When you heat an atom, some of its electrons are "excited* to higher energy levels. When an electron drops from one level to a lower energy level, it emits a quantum of energy. ... The different mix of energy differences for each atom produces different colors. Each metal gives a characteristic flame emission spectrum
You have to use the equation q=mcΔT and solve for T(final).
T(final)=(q/mc)+T(initial)
q=the amount of energy absorbed or released (in this case 868J)
m=the mass of the sample (in this case 15.6g)
c= the specific heat capacity of the substance (in this case 2.41 J/g°C)
T(initial)=the initial temperature of the sample (in this case 21.5°C)
When you plug everything in, you should get 44.6°C.
Therefore the final temperature of ethanol is 44.6°C
I hope this helps. Let me know if anything is unclear.
Answer:
3
Explanation:
C3H8. + 5O2. ::: 3CO2. + 4H2O
I think it's A. True Hoped I helped you out
Answer:
radiation B species x because short canines are less likely to break.