Answer:
Step-by-step explanation:
12.
the formula for the volume of a cone is V=1/3hπr²
549.5 = 1/3(21)(3.14)(x)^2
549.5 = 7(3.14)(x)^2
549.5 = 21.98(x)^2
549.5 = 21.98(x)^2
divide by 21.98 on both sides
25 = (x)^2
sqrt 25 = sqrt x^2
5 = x
13.
the formula for the volume of a sphere is V=4/3πr^3
v=4/3(3.14)9^3
v=4/3(3.14)729
v=(4.186)729
v=3052.08
14.
the formula for the volume of a sphere is V=4/3πr^3
523=4/3(3.14)r^3
523=4/3(3.14)r^3
523=(4.186)r^3
divide by 4.186 on both sides
124.92=r^3
cube root on both sides
4.998=r
round
5=r
<em><u>Please mark brainliest this took me a while</u></em>
Answer:
2.5, 6 and 6.5 inches.
Step-by-step explanation:
5 + 12 + 13 = 30
So the shortest side = 5/30 * 15 = 1/6 * 15
= 2.5 inches.
The longest = 13 / 30 * 15 = 13/2
= 6.5 inches,
and the third = 12/30 * 15
= 6 inches.
Answer:
Your answer for F will be 13.
Step-by-step explanation:
Take 11.2 and add it to 1.8, and you will get 13 and 13 will be the variable (f). So, f (13) - 1.8 = 11.2
Hope this helps! :D
Answer with explanation:

--------------------------------------------------------Dividing both sides by 8 x
This Integration is of the form ⇒y'+p y=q,which is Linear differential equation.
Integrating Factor
Multiplying both sides by Integrating Factor
![x^{\frac{1}{8}}\times e^{\frac{x^2}{2}}\times [y'+y\times\frac{1+4x^2}{8x}]=\frac{1}{8}\times x^{\frac{1}{8}}\times e^{\frac{x^2}{2}}\\\\ \text{Integrating both sides}\\\\y\times x^{\frac{1}{8}}\times e^{\frac{x^2}{2}}=\frac{1}{8}\int {x^{\frac{1}{8}}\times e^{\frac{x^2}{2}}} \, dx \\\\8y\times x^{\frac{1}{8}}\times e^{\frac{x^2}{2}}=\int {x^{\frac{1}{8}}\times e^{\frac{x^2}{2}}} \, dx\\\\8y\times x^{\frac{1}{8}}\times e^{\frac{x^2}{2}}=-[x^{\frac{9}{8}}]\times\frac{ \Gamma(0.5625, -x^2)}{(-x^2)^{\frac{9}{16}}}\\\\8y\times x^{\frac{1}{8}}\times e^{\frac{x^2}{2}}=(-1)^{\frac{-1}{8}}[ \Gamma(0.5625, -x^2)]+C-----(1)](https://tex.z-dn.net/?f=x%5E%7B%5Cfrac%7B1%7D%7B8%7D%7D%5Ctimes%20e%5E%7B%5Cfrac%7Bx%5E2%7D%7B2%7D%7D%5Ctimes%20%5By%27%2By%5Ctimes%5Cfrac%7B1%2B4x%5E2%7D%7B8x%7D%5D%3D%5Cfrac%7B1%7D%7B8%7D%5Ctimes%20x%5E%7B%5Cfrac%7B1%7D%7B8%7D%7D%5Ctimes%20e%5E%7B%5Cfrac%7Bx%5E2%7D%7B2%7D%7D%5C%5C%5C%5C%20%5Ctext%7BIntegrating%20both%20sides%7D%5C%5C%5C%5Cy%5Ctimes%20x%5E%7B%5Cfrac%7B1%7D%7B8%7D%7D%5Ctimes%20e%5E%7B%5Cfrac%7Bx%5E2%7D%7B2%7D%7D%3D%5Cfrac%7B1%7D%7B8%7D%5Cint%20%7Bx%5E%7B%5Cfrac%7B1%7D%7B8%7D%7D%5Ctimes%20e%5E%7B%5Cfrac%7Bx%5E2%7D%7B2%7D%7D%7D%20%5C%2C%20dx%20%5C%5C%5C%5C8y%5Ctimes%20x%5E%7B%5Cfrac%7B1%7D%7B8%7D%7D%5Ctimes%20e%5E%7B%5Cfrac%7Bx%5E2%7D%7B2%7D%7D%3D%5Cint%20%7Bx%5E%7B%5Cfrac%7B1%7D%7B8%7D%7D%5Ctimes%20e%5E%7B%5Cfrac%7Bx%5E2%7D%7B2%7D%7D%7D%20%5C%2C%20dx%5C%5C%5C%5C8y%5Ctimes%20x%5E%7B%5Cfrac%7B1%7D%7B8%7D%7D%5Ctimes%20e%5E%7B%5Cfrac%7Bx%5E2%7D%7B2%7D%7D%3D-%5Bx%5E%7B%5Cfrac%7B9%7D%7B8%7D%7D%5D%5Ctimes%5Cfrac%7B%20%5CGamma%280.5625%2C%20-x%5E2%29%7D%7B%28-x%5E2%29%5E%7B%5Cfrac%7B9%7D%7B16%7D%7D%7D%5C%5C%5C%5C8y%5Ctimes%20x%5E%7B%5Cfrac%7B1%7D%7B8%7D%7D%5Ctimes%20e%5E%7B%5Cfrac%7Bx%5E2%7D%7B2%7D%7D%3D%28-1%29%5E%7B%5Cfrac%7B-1%7D%7B8%7D%7D%5B%20%5CGamma%280.5625%2C%20-x%5E2%29%5D%2BC-----%281%29)
When , x=1, gives , y=9.
Evaluate the value of C and substitute in the equation 1.