Answer:
see explanation
Step-by-step explanation:
The equation of a line in slope- intercept form is
y = mx + c ( m is the slope and c the y- intercept )
Calculate m using the slope formula
m = (y₂ - y₁ ) / (x₂ - x₁ )
with (x₁, y₁ ) = (- 2, - 6) and (x₂, y₂ ) = (2, - 3) ← 2 points on the line
m =
=
, thus
y =
x + c ← is the partial equation
To find c substitute either ot the 2 points into the partial equation
Using (2, - 3), then
- 3 =
+ c ⇒ c = - 3 -
= - 
y =
x -
← equation of line
A. would have the highest pitch because the sound vibration are close together and it would also be the fastest. B is incorrect because the sound waves are very which would give it a deeper voice and it would be the slowest
Hope this helps
Answer:
true
Step-by-step explanation:
first find the median of the lower and upper half of the data. These values are quartile 1 (Q1) and quartile 3 (Q3). The IQR is the difference between Q3 and Q1.
Answer:
He must work 52 days to pay for a single ticket.
Step-by-step explanation:
This question can be solved using proportions.
Per hour:
Joel earns $7.25 per hour, 20% of which is deducted for taxes. So without taxes, in each hour, he earns 100%-20% of 80% of this, so 0.8*7.25 = $5.8.
Per day:
He works 9 a.m. to 5 p.m. each day, so 8 hours a day.
For each hour, he earns $5.8.
So in a day, he makes 8*5.8 = $46.4
How many days he must work:
The ticket costs $2400.
He makes $46.4 a day.
So, to buy a ticket, he needs to work:
2400/46.4 = 51.7 days
Rounding up
He must work 52 days to pay for a single ticket.
Answer: 0.206
Step-by-step explanation: the probability of employees that needs corrective shoes are =8%= 8/100 = 0.08
Probability of employees that needs major dental work = 15% = 15/100 = 0.15
Probability of employees that needs both corrective shoes and dental work = 3% = 3/100 = 0.03
The probability that an employee will need either corrective shoes or major dental work = (Probability an employee will need correct shoes and not need dental work) or (probability that an employee will need dental work or not corrective shoes)
Probability of employee not needing corrective shoes = 1 - 0.08 = 0.92
Probability of employee not needing dental work = 1 - 0.15 = 0.85
The probability that an employee will need either corrective shoes or major dental work = (0.08×0.85) + (0.15×0.92) = 0.068 + 0.138 = 0.206 = 20.6%
The probability that an employee will need either corrective shoes or dental work = 0.206.
Please note that the word "either" implies that we must choose one of the two options (corrective shoes or dental work) and not both.