Answer:
1. When we reflect the shape I along X axis it will take the shape I in first quadrant, and then if we rotate the shape I by 90° clockwise, it will take the shape again in second quadrant . So we are not getting shape II. This Option is Incorrect.
2. Second Option is correct , because by reflecting the shape I across X axis and then by 90° counterclockwise rotation will take the Shape I in second quadrant ,where we are getting shape II.
3. a reflection of shape I across the y-axis followed by a 90° counterclockwise rotation about the origin takes the shape I in fourth Quadrant. →→ Incorrect option.
4. This option is correct, because after reflecting the shape through Y axis ,and then rotating the shape through an angle of 90° in clockwise direction takes it in second quadrant.
5. A reflection of shape I across the x-axis followed by a 180° rotation about the origin takes the shape I in third quadrant.→→Incorrect option
Answer:
(-7, -12)
Step-by-step explanation:
4x-3y=8
5x-2y=-11
Is there any of the like terms can be added and the result will be 0? No, so we have to multiple one OR both of the equations to make that one number do that.
(I will try to remove the y like terms so i will multiple both of them by the opposite so both of the ys will be 6)
2(4x-3y=8)
-3(5x-2y=-11)
8x-6y=16
-15x+6y=33
(now the easy part… cancel the 6s and add the equations)
8x+(-15x)=-7x
16+33=49
-7x=49
(divide 49 by -7)
x=-7
Replace x in any of the equations and you’ll get the y value.
4x-3y=8
4(-7)-3y=8
-28-3y=8
-3y=36
y=12
Threfore, there is one solution which is….. (-7,-12)
Si it is a linear eqaution