4/(√<em>x</em> - √(<em>x</em> - 2)) × (√<em>x</em> + √(<em>x</em> - 2))/(√<em>x</em> + √(<em>x</em> - 2))
= 4 (√<em>x</em> + √(<em>x</em> - 2)) / ((√<em>x</em>)² - (√(<em>x</em> - 2))²)
= 4 (√<em>x</em> + √(<em>x</em> - 2)) / (<em>x</em> - (<em>x</em> - 2))
= 4 (√<em>x</em> + √(<em>x</em> - 2)) / (<em>x</em> - <em>x</em> + 2)
= 4 (√<em>x</em> + √(<em>x</em> - 2)) / 2
= 2 (√<em>x</em> + √(<em>x</em> - 2))
Answer:
Step-by-step explanation:
25x4=100, so 40x4= 160
40 is 25% of 160
Answer:
Width=75
length=105
Step-by-step explanation:
Width=x
length=30+x
= 7875=x*30+x
x^2+30x-7875=0
x^2+105x-75x-7875=0
x(x+105)-75(x+105)=0
Answer:
V = 20.2969 mm^3 @ t = 10
r = 1.692 mm @ t = 10
Step-by-step explanation:
The solution to the first order ordinary differential equation:

Using Euler's method

Where initial droplet volume is:

Hence, the iterative solution will be as next:
- i = 1, ti = 0, Vi = 65.45

- i = 2, ti = 0.5, Vi = 63.88

- i = 3, ti = 1, Vi = 62.33

We compute the next iterations in MATLAB (see attachment)
Volume @ t = 10 is = 20.2969
The droplet radius at t=10 mins

The average change of droplet radius with time is:
Δr/Δt = 
The value of the evaporation rate is close the value of k = 0.08 mm/min
Hence, the results are accurate and consistent!