Answer:
<u>The measure of the arc CD = 64°</u>
Step-by-step explanation:
It is required to find the measure of the arc CD in degrees.
So, as shown at the graph
BE and AD are are diameters of circle P
And ∠APE is a right angle ⇒ ∠APE = 90°
So, BE⊥AD
And so, ∠BPE = 90° ⇒(1)
But it is given: ∠BPE = (33k-9)° ⇒(2)
From (1) and (2)
∴ 33k - 9 = 90
∴ 33k = 90 + 9 = 99
∴ k = 99/33 = 3
The measure of the arc CD = ∠CPD = 20k + 4
By substitution with k
<u>∴ The measure of the arc CD = 20*3 + 4 = 60 + 4 = 64°</u>
The best thing to do is to divide the amount she has driven (357.9) by the miles (21)
As you're looking for an estimate, you have to round them.
357.9 rounds to 360
21 rounds to 20
Therefore, you've got to divide them
360/20= 18
Therefore, Ellen has driven approximately 18 miles
Hope this helps :)
Answer:
Least number of bus require for trip = 5 buses (Approx)
Step-by-step explanation:
Given:
Total number of classes = 9
Number of student in each class = 25
Number of teacher = 4
Number of chaperones = Double of teacher
Bus hold = 45 people
Find:
Least number of bus require for trip
Computation:
Total number of student = 9 × 25
Total number of student = 225
Number of chaperones = 4 × 2
Number of chaperones = 8
Total people = 225 + 8 + 4
Total people = 237
Least number of bus require for trip = Total people / Bus hold
Least number of bus require for trip = 237 / 45
Least number of bus require for trip = 5.266
Least number of bus require for trip = 5 buses (Approx)
Answer:
a) 
b) The should sample at least 293 small claims.
Step-by-step explanation:
We have that to find our
level, that is the subtraction of 1 by the confidence interval divided by 2. So:

Now, we have to find z in the Ztable as such z has a pvalue of
.
So it is z with a pvalue of
, so
, which means that the answer of question a is z = 1.645.
Now, find the margin of error M as such

In which
is the standard deviation of the population and n is the size of the sample.
(b) If the group wants their estimate to have a maximum error of $12, how many small claims should they sample?
They should sample at least n small claims, in which n is found when
. So







The should sample at least 293 small claims.
1/3 is greater than 1/5 and 1/4.