Answer: 1 inch
Volume of the cylinder = πr²h
Volume of the cone = 1/3πr²h
If the radius are the same for both the cone and the cylinder, then the liquid will reach 1/3 of its height in the cylinder compared to the cone.
Height = 1/3 x 3 inches
Height = 1 inch
----------------------------------------------------------------------------------------
Answer: The height of the cylinder will be 1 inch.
----------------------------------------------------------------------------------------
5
Step-by-step explanation:
Length (L) = u
Breadth (b) = 6 mi
Perimeter (P) = 22 miles
Now we know
P = 2 (L+ b)
22 = 2 ( u + 6)
11 = u + 6
11 - 6 = u
u = 5
Answer:
(i) (f - g)(x) = x² + 2·x + 1
(ii) (f + g)(x) = x² + 4·x + 3
(iii) (f·g)(x) = x³ + 4·x² + 5·x + 2
Step-by-step explanation:
The given functions are;
f(x) = x² + 3·x + 2
g(x) = x + 1
(i) (f - g)(x) = f(x) - g(x)
∴ (f - g)(x) = x² + 3·x + 2 - (x + 1) = x² + 3·x + 2 - x - 1 = x² + 2·x + 1
(f - g)(x) = x² + 2·x + 1
(ii) (f + g)(x) = f(x) + g(x)
∴ (f + g)(x) = x² + 3·x + 2 + (x + 1) = x² + 3·x + 2 + x + 1 = x² + 4·x + 3
(f + g)(x) = x² + 4·x + 3
(iii) (f·g)(x) = f(x) × g(x)
∴ (f·g)(x) = (x² + 3·x + 2) × (x + 1) = x³ + 3·x² + 2·x + x² + 3·x + 2 = x³ + 4·x² + 5·x + 2
(f·g)(x) = x³ + 4·x² + 5·x + 2