Answer:
28..
Step-by-step explanation:
divide 35 by 1 1/4...
Answer:
Step-by-step explanation:
1.
To write the form of the partial fraction decomposition of the rational expression:
We have:

2.
Using partial fraction decomposition to find the definite integral of:

By using the long division method; we have:


<u> </u>

So;

By using partial fraction decomposition:


x + 20 = A(x + 2) + B(x - 10)
x + 20 = (A + B)x + (2A - 10B)
Now; we have to relate like terms on both sides; we have:
A + B = 1 ; 2A - 10 B = 20
By solvong the expressions above; we have:

Now;

Thus;

Now; the integral is:


3. Due to the fact that the maximum words this text box can contain are 5000 words, we decided to write the solution for question 3 and upload it in an image format.
Please check to the attached image below for the solution to question number 3.
Answer:
b 129%
Step-by-step explanation:
Answer:
3.07
Step-by-step explanation: