Answer:
The quotient of any two numbers can be written as:
A/B
such that:
A, B ∈ {R}
Where {R} is the set of all real numbers.
But we also have the restriction that the denominator, B in this case, must be different than zero.
So we can define the set:
{R \ {0}}
As the set of all the real numbers minus the element 0.
So in this set we do not have the number zero, so now we can write our expression as:
A/B
A ∈ {R}, B ∈ {R \ {0}}
I'll go slow:





Answer: B rational and equal to 0.
Answer:
"number line with open circles on negative 9 and 5, shading going in the opposite directions."
Step-by-step explanation:
Your inequality doesn't include an equal sign so there will be no closed holes. It will only be open holes.
|u|>14 means that the number u has to be greater than 14 or less than -14. These numbers I describe just now all have a distance greater than 14 from 0.
So |u|>14 implies u>14 or u<-14.
But we are solving |2x+4|>14 so this implies we have 2x+4>14 or 2x+4<-14.
2x+4>14
Subtract 4 on both sides:
2x >10
Divide both sides by 2:
x >5
2x+4<-14
Subtract 4 on both sides:
2x <-18
Divide both sides by 2:
x <-9
So our solution is x>5 or x<-9.
Graphing!
~~~~~~~O O~~~~~~~~
-----------(-9)---------------------------------(5)---------------
So we shaded to the right of 5 because our inequality says x is bigger than 5.
We shaded to the left of -9 because our inequality says x is less than -9.