1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Anna11 [10]
2 years ago
8

Find sum (_6/3)+(_8/9)+7/3=

Mathematics
1 answer:
lidiya [134]2 years ago
8 0
-5/9 is the answer !!!
You might be interested in
Can someone help me with question e please ? ​
MAXImum [283]

Answer:

Step-by-step explanation:

a) The domain is R- all real numbers.

b) The domain is R- all real numbers.

c) we need

x^{2}-4\neq  0\\x^{2} \neq 4\\x\neq 2\\and\\x\neq -2

So the domain is R\{-2, 2}

d)

we need

x^{2}+x-2\neq  0\\x\neq 1\\and\\x\neq -2

So the domain is R\{-2, 1}

e)

we need: x-1>0 or x> 1

So the domain is (1,+∞)

6 0
2 years ago
Tanya's father travels every week for business. He has traveled around the
Nikitich [7]

The correct answer would be: 4.6 x 10^5

8 0
2 years ago
What is 1/3 eqaul to?
MissTica
It equal to .3333333333333333333333333333333333......
4 0
2 years ago
Read 2 more answers
the sum of all but one interior angle of a heptagon is 776°. what is the measure of the final interior angle?
soldi70 [24.7K]

Answer:

The final interior angle = 124°

Step-by-step explanation:

A heptagon has 7 sides. The sum of the interior angles formula:

The sum of the interior angles =  (n - 2)180 where n = number of sides.

The sum of the interior angles= (7 - 2)180° = 900°

Six interior angles = 776°.

The final interior angle + six interior angle = 900°

The final interior angle + 776° = 900°      

The final interior angle = 900° - 776°

The final interior angle = 124°

6 0
2 years ago
Based on the number of voids, a ferrite slab is classified as either high, medium, or low. Historically, 5% of the slabs are cla
AnnyKZ [126]

Answer:

(a) Name: Multinomial distribution

Parameters: p_1 = 5\%   p_2 = 85\%   p_3 = 10\%  n = 20

(b) Range: \{(x,y,z)| x + y + z=20\}

(c) Name: Binomial distribution

Parameters: p_1 = 5\%      n = 20

(d)\ E(x) = 1   Var(x) = 0.95

(e)\ P(X = 1, Y = 17, Z = 3) = 0

(f)\ P(X \le 1, Y = 17, Z = 3) =0.07195

(g)\ P(X \le 1) = 0.7359

(h)\ E(Y) = 17

Step-by-step explanation:

Given

p_1 = 5\%

p_2 = 85\%

p_3 = 10\%

n = 20

X \to High Slabs

Y \to Medium Slabs

Z \to Low Slabs

Solving (a): Names and values of joint pdf of X, Y and Z

Given that:

X \to Number of voids considered as high slabs

Y \to Number of voids considered as medium slabs

Z \to Number of voids considered as low slabs

Since the variables are more than 2 (2 means binomial), then the name is multinomial distribution

The parameters are:

p_1 = 5\%   p_2 = 85\%   p_3 = 10\%  n = 20

And the mass function is:

f_{XYZ} = P(X = x; Y = y; Z = z) = \frac{n!}{x!y!z!} * p_1^xp_2^yp_3^z

Solving (b): The range of the joint pdf of X, Y and Z

Given that:

n = 20

The number of voids (x, y and z) cannot be negative and they must be integers; So:

x + y + z = n

x + y + z = 20

Hence, the range is:

\{(x,y,z)| x + y + z=20\}

Solving (c): Names and values of marginal pdf of X

We have the following parameters attributed to X:

p_1 = 5\% and n = 20

Hence, the name is: Binomial distribution

Solving (d): E(x) and Var(x)

In (c), we have:

p_1 = 5\% and n = 20

E(x) = p_1* n

E(x) = 5\% * 20

E(x) = 1

Var(x) = E(x) * (1 - p_1)

Var(x) = 1 * (1 - 5\%)

Var(x) = 1 * 0.95

Var(x) = 0.95

(e)\ P(X = 1, Y = 17, Z = 3)

In (b), we have: x + y + z = 20

However, the given values of x in this question implies that:

x + y + z = 1 + 17 + 3

x + y + z = 21

Hence:

P(X = 1, Y = 17, Z = 3) = 0

(f)\ P{X \le 1, Y = 17, Z = 3)

This question implies that:

P(X \le 1, Y = 17, Z = 3) =P(X = 0, Y = 17, Z = 3) + P(X = 1, Y = 17, Z = 3)

Because

0, 1 \le 1 --- for x

In (e), we have:

P(X = 1, Y = 17, Z = 3) = 0

So:

P(X \le 1, Y = 17, Z = 3) =P(X = 0, Y = 17, Z = 3) +0

P(X \le 1, Y = 17, Z = 3) =P(X = 0, Y = 17, Z = 3)

In (a), we have:

f_{XYZ} = P(X = x; Y = y; Z = z) = \frac{n!}{x!y!z!} * p_1^xp_2^yp_3^z

So:

P(X=0; Y=17; Z = 3) = \frac{20!}{0! * 17! * 3!} * (5\%)^0 * (85\%)^{17} * (10\%)^{3}

P(X=0; Y=17; Z = 3) = \frac{20!}{1 * 17! * 3!} * 1 * (85\%)^{17} * (10\%)^{3}

P(X=0; Y=17; Z = 3) = \frac{20!}{17! * 3!} * (85\%)^{17} * (10\%)^{3}

Expand

P(X=0; Y=17; Z = 3) = \frac{20*19*18*17!}{17! * 3*2*1} * (85\%)^{17} * (10\%)^{3}

P(X=0; Y=17; Z = 3) = \frac{20*19*18}{6} * (85\%)^{17} * (10\%)^{3}

P(X=0; Y=17; Z = 3) = 20*19*3 * (85\%)^{17} * (10\%)^{3}

Using a calculator, we have:

P(X=0; Y=17; Z = 3) = 0.07195

So:

P(X \le 1, Y = 17, Z = 3) =P(X = 0, Y = 17, Z = 3)

P(X \le 1, Y = 17, Z = 3) =0.07195

(g)\ P(X \le 1)

This implies that:

P(X \le 1) = P(X = 0) + P(X = 1)

In (c), we established that X is a binomial distribution with the following parameters:

p_1 = 5\%      n = 20

Such that:

P(X=x) = ^nC_x * p_1^x * (1 - p_1)^{n - x}

So:

P(X=0) = ^{20}C_0 * (5\%)^0 * (1 - 5\%)^{20 - 0}

P(X=0) = ^{20}C_0 * 1 * (1 - 5\%)^{20}

P(X=0) = 1 * 1 * (95\%)^{20}

P(X=0) = 0.3585

P(X=1) = ^{20}C_1 * (5\%)^1 * (1 - 5\%)^{20 - 1}

P(X=1) = 20 * (5\%)* (1 - 5\%)^{19}

P(X=1) = 0.3774

So:

P(X \le 1) = P(X = 0) + P(X = 1)

P(X \le 1) = 0.3585 + 0.3774

P(X \le 1) = 0.7359

(h)\ E(Y)

Y has the following parameters

p_2 = 85\%  and    n = 20

E(Y) = p_2 * n

E(Y) = 85\% * 20

E(Y) = 17

8 0
2 years ago
Other questions:
  • What number is 0.02 more than 5 and 5 tenths
    15·1 answer
  • What is the solution set to the following system?
    5·1 answer
  • Define scalene and isosceles
    9·2 answers
  • Anyone know how to solve this?
    11·1 answer
  • I will brainlist you Little help? Please?
    13·1 answer
  • Hiii need help I'm in exam​
    13·1 answer
  • A line passes through the point (-6,4) and has a slope of 5/2
    15·1 answer
  • Question 6 of 10
    7·1 answer
  • Can someone help me with this having trouble !
    12·2 answers
  • What is the 99th digit of pie?​
    10·2 answers
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!