Answer:
![f^{-1} = \frac{x-1}{2}](https://tex.z-dn.net/?f=f%5E%7B-1%7D%20%3D%20%5Cfrac%7Bx-1%7D%7B2%7D)
Step-by-step explanation:
![f(x) = 2x+1](https://tex.z-dn.net/?f=f%28x%29%20%3D%202x%2B1)
<em>Replace it with y</em>
![y = 2x+1](https://tex.z-dn.net/?f=y%20%3D%202x%2B1)
<em>Exchange the values of x and y</em>
![x = 2y+1](https://tex.z-dn.net/?f=x%20%3D%202y%2B1)
<em>Solve for y</em>
![x = 2y+1](https://tex.z-dn.net/?f=x%20%3D%202y%2B1)
<em>Subtracting 1 from both sides</em>
![2y = x-1](https://tex.z-dn.net/?f=2y%20%3D%20x-1)
<em>Dividing both sides by 2</em>
![y = \frac{x-1}{2}](https://tex.z-dn.net/?f=y%20%3D%20%5Cfrac%7Bx-1%7D%7B2%7D)
<em>Replace it by </em>![f^{-1}](https://tex.z-dn.net/?f=f%5E%7B-1%7D)
So,
![f^{-1} = \frac{x-1}{2}](https://tex.z-dn.net/?f=f%5E%7B-1%7D%20%3D%20%5Cfrac%7Bx-1%7D%7B2%7D)
Answer:
B) 4√2
General Formulas and Concepts:
<u>Calculus</u>
Differentiation
- Derivatives
- Derivative Notation
Basic Power Rule:
- f(x) = cxⁿ
- f’(x) = c·nxⁿ⁻¹
Parametric Differentiation
Integration
- Integrals
- Definite Integrals
- Integration Constant C
Arc Length Formula [Parametric]: ![\displaystyle AL = \int\limits^b_a {\sqrt{[x'(t)]^2 + [y(t)]^2}} \, dx](https://tex.z-dn.net/?f=%5Cdisplaystyle%20AL%20%3D%20%5Cint%5Climits%5Eb_a%20%7B%5Csqrt%7B%5Bx%27%28t%29%5D%5E2%20%2B%20%5By%28t%29%5D%5E2%7D%7D%20%5C%2C%20dx)
Step-by-step explanation:
<u>Step 1: Define</u>
<em>Identify</em>
![\displaystyle \left \{ {{x = t - cos(t)} \atop {y = 1 - sin(t)}} \right.](https://tex.z-dn.net/?f=%5Cdisplaystyle%20%5Cleft%20%5C%7B%20%7B%7Bx%20%3D%20t%20-%20cos%28t%29%7D%20%5Catop%20%7By%20%3D%201%20-%20sin%28t%29%7D%7D%20%5Cright.)
Interval [0, π]
<u>Step 2: Find Arc Length</u>
- [Parametrics] Differentiate [Basic Power Rule, Trig Differentiation]:
![\displaystyle \left \{ {{x' = 1 + sin(t)} \atop {y' = -cos(t)}} \right.](https://tex.z-dn.net/?f=%5Cdisplaystyle%20%5Cleft%20%5C%7B%20%7B%7Bx%27%20%3D%201%20%2B%20sin%28t%29%7D%20%5Catop%20%7By%27%20%3D%20-cos%28t%29%7D%7D%20%5Cright.)
- Substitute in variables [Arc Length Formula - Parametric]:
![\displaystyle AL = \int\limits^{\pi}_0 {\sqrt{[1 + sin(t)]^2 + [-cos(t)]^2}} \, dx](https://tex.z-dn.net/?f=%5Cdisplaystyle%20AL%20%3D%20%5Cint%5Climits%5E%7B%5Cpi%7D_0%20%7B%5Csqrt%7B%5B1%20%2B%20sin%28t%29%5D%5E2%20%2B%20%5B-cos%28t%29%5D%5E2%7D%7D%20%5C%2C%20dx)
- [Integrand] Simplify:
![\displaystyle AL = \int\limits^{\pi}_0 {\sqrt{2[sin(x) + 1]} \, dx](https://tex.z-dn.net/?f=%5Cdisplaystyle%20AL%20%3D%20%5Cint%5Climits%5E%7B%5Cpi%7D_0%20%7B%5Csqrt%7B2%5Bsin%28x%29%20%2B%201%5D%7D%20%5C%2C%20dx)
- [Integral] Evaluate:
![\displaystyle AL = \int\limits^{\pi}_0 {\sqrt{2[sin(x) + 1]} \, dx = 4\sqrt{2}](https://tex.z-dn.net/?f=%5Cdisplaystyle%20AL%20%3D%20%5Cint%5Climits%5E%7B%5Cpi%7D_0%20%7B%5Csqrt%7B2%5Bsin%28x%29%20%2B%201%5D%7D%20%5C%2C%20dx%20%3D%204%5Csqrt%7B2%7D)
Topic: AP Calculus BC (Calculus I + II)
Unit: Parametric Integration
Book: College Calculus 10e
Answer:
√10/2x
Step-by-step explanation:
Multiply by √6 on the top and bottom to rationalize the denominator.
(√15×√6)/(√6x×√6) = √90/6x = (√9×√10)/6x = 3√10/6x = √10/2x
20 students times 40% of them is 20 times 0.40, which is 8
499 divided by the sale price, 424.13
1.1765, or when rounded, 1.18%
1. 8 students
2. 1.18%