Bear in mind that for y intercept x=0 and for x intercept y=0
Answer: infinitely many solutions.
Step-by-step explanation:
Ok, our equation is:
-2.1*b + 5.3 = b - 3.1*b + 5.3
now, simplifyng the right side, we have:
b - 3.1*b + 5.3 = (1 - 3.1)*b + 5.3 = -2.1*b + 5.3
Then our initial expression is:
-2.1*b + 5.3 = -2.1*b + 5.3
So in both sides of the equality we have the exact same thing, so this is a trivial equality.
This means that the equality will remain true for any value of b, which means that we have infinitely many solutions.
(Простите, пожалуйста, мой английский. Русский не мой родной язык. Надеюсь, у вас есть способ перевести это решение. Если нет, возможно, прилагаемое изображение объяснит достаточно.)
Use the shell method. Each shell has a height of 3 - 3/4 <em>y</em> ², radius <em>y</em>, and thickness ∆<em>y</em>, thus contributing an area of 2<em>π</em> <em>y</em> (3 - 3/4 <em>y</em> ²). The total volume of the solid is going to be the sum of infinitely many such shells with 0 ≤ <em>y</em> ≤ 2, thus given by the integral

Or use the disk method. (In the attachment, assume the height is very small.) Each disk has a radius of √(4/3 <em>x</em>), thus contributing an area of <em>π</em> (√(4/3 <em>x</em>))² = 4<em>π</em>/3 <em>x</em>. The total volume of the solid is the sum of infinitely many such disks with 0 ≤ <em>x</em> ≤ 3, or by the integral

Using either method, the volume is 6<em>π</em> ≈ 18,85. I do not know why your textbook gives a solution of 90,43. Perhaps I've misunderstood what it is you're supposed to calculate? On the other hand, textbooks are known to have typographical errors from time to time...
Im not in this math section yet but i think that you can look it up as a worksheet and find the answer on google.
16 pi? well... 16 pi = 50.2654824574. So... the diameter would be 16 and the radius would be 8. I think!