Answer:
Size of |E n B| = 2
Size of |B| = 1
Step-by-step explanation:
<em>I'll assume both die are 6 sides</em>
Given
Blue die and Red Die
Required
Sizes of sets
- 
- 
The question stated the following;
B = Event that blue die comes up with 6
E = Event that both dice come even
So first; we'll list out the sample space of both events


Calculating the size of |E n B|


<em>The size = 3 because it contains 3 possible outcomes</em>
Calculating the size of |B|

<em>The size = 1 because it contains 1 possible outcome</em>
The purpose of the tensor-on-tensor regression, which we examine, is to relate tensor responses to tensor covariates with a low Tucker rank parameter tensor/matrix without being aware of its intrinsic rank beforehand.
By examining the impact of rank over-parameterization, we suggest the Riemannian Gradient Descent (RGD) and Riemannian Gauss-Newton (RGN) methods to address the problem of unknown rank. By demonstrating that RGD and RGN, respectively, converge linearly and quadratically to a statistically optimal estimate in both rank correctly-parameterized and over-parameterized scenarios, we offer the first convergence guarantee for the generic tensor-on-tensor regression. According to our theory, Riemannian optimization techniques automatically adjust to over-parameterization without requiring implementation changes.
Learn more about tensor-on-tensor here
brainly.com/question/16382372
#SPJ4
Answer:
i dont know what it means by expand but i will simplify it
it would simplify to 16x-18
Step-by-step explanation:
5(2x-1) + 2(3x-6)
10x-5+6x-12
10x+6x-5-12
16x-18
Answer:
a=-0.5
Step-by-step explanation:
Distributive property for left side, difference of squares for right side.
8a-9a^2=-40+36-9a^2
-9a^2 cancels out
8a=-4
a=-0.5