Answer:
The answer is 18x - 8.
Step-by-step explanation: Trust me, an know a lot about math.
<h3>
<u>Explanation</u></h3>
- Given the system of equations.

- Solve the system of equations by eliminating either x-term or y-term. We will eliminate the y-term as it is faster to solve the equation.
To eliminate the y-term, we have to multiply the negative in either the first or second equation so we can get rid of the y-term. I will multiply negative in the second equation.

There as we can get rid of the y-term by adding both equations.

Hence, the value of x is 3. But we are not finished yet because we need to find the value of y as well. Therefore, we substitute the value of x in any given equations. I will substitute the value of x in the second equation.

Hence, the value of y is 4. Therefore, we can say that when x = 3, y = 4.
- Answer Check by substituting both x and y values in both equations.
<u>First</u><u> </u><u>Equation</u>

<u>Second</u><u> </u><u>Equation</u>

Hence, both equations are true for x = 3 and y = 4. Therefore, the solution is (3,4)
<h3>
<u>Answer</u></h3>

Let "a" and "b" represent the values of the first and second purchases, respectively.
0.40*(original price of "a") = $10
(original price of "a") = $10/0.40 = $25.00 . . . . divide by 0.40 and evaluate
a = (original price of "a") - $10 . . . . . . Julia paid the price after the discount
a = $25.00 -10.00 = $15.00
At the other store,
$29 = 0.58b
$29/0.58 = b = $50 . . . . . . . divide by the coefficient of b and evaluate
Then Julia's total spending is
a + b = $15.00 +50.00 = $65.00
Julia spent $65 in all at the two stores.