Answer:
x = -5
Step-by-step explanation:
In both questions you want to get the x alone.
1. 
-3x + (-6) = 9
First you want to add 6 to both sides so you'll be left with:
-3x = 15
Next, you want to divide both sides by -3 and you'll get: 
x = -5
2.
-4x + (-12) = 8
You want to do the same thing as the first one so you'll add 12 to both sides:
-4x = 20
Then, you will divide both sides by -4 and get:
 x = -5
 
        
                    
             
        
        
        
Answer:
Increasing if f' >0 and decreasing if f'<0
Step-by-step explanation:
Difference quotient got by getting
 will be greater than 0 if function is increasing otherwise negative
 will be greater than 0 if function is increasing otherwise negative
Here h is a small positive value.
In other words, we find that whenever first derivative of a function f(x) is positive the function is increasing.
Here given that for x1, x2 where x1<x2, we have 
if f(x1) <f(x2) then the function is decreasing.
Or if x1<x2 and if f(x1) >f(x2) for all x1, and x2 in I the open interval we say f(x) is decreasing in I.
 
        
             
        
        
        
Answer:
5
Step-by-step explanation:
There are five major causes of extinction: habitat loss, an introduced species, pollution, population growth, and overconsumption.
 
        
             
        
        
        
Answer: set up the relation as a table or ordered pairs 
Step-by-step explanation: the domain has to be matched with exactly one element in the range.
 
        
             
        
        
        
Answer:
![\huge\boxed{\sqrt[4]{16a^{-12}}=2a^{-3}=\dfrac{2}{a^3}}](https://tex.z-dn.net/?f=%5Chuge%5Cboxed%7B%5Csqrt%5B4%5D%7B16a%5E%7B-12%7D%7D%3D2a%5E%7B-3%7D%3D%5Cdfrac%7B2%7D%7Ba%5E3%7D%7D)
Step-by-step explanation:
![16=2^4\\\\a^{-12}=a^{(-3)(4)}=\left(a^{-3}\right)^4\qquad\text{used}\ (a^n)^m=a^{nm}\\\\\sqrt[4]{16a^{-12}}=\bigg(16a^{-12}\bigg)^\frac{1}{4}\qquad\text{used}\ a^\frac{1}{n}=\sqrt[n]{a}\\\\=\bigg(2^4(a^{-3})^4\bigg)^\frac{1}{4}\qquad\text{use}\ (ab)^n=a^nb^n\\\\=\bigg(2^4\bigg)^\frac{1}{4}\bigg[(a^{-3})^4\bigg]^\frac{1}{4}\qquad\text{use}\ (a^n)^m=a^{nm}\\\\=2^{(4)(\frac{1}{4})}(a^{-3})^{(4)(\frac{1}{4})}=2^1(a^{-3})^1=2a^{-3}\qquad\text{use}\ a^{-n}=\dfrac{1}{a^n}](https://tex.z-dn.net/?f=16%3D2%5E4%5C%5C%5C%5Ca%5E%7B-12%7D%3Da%5E%7B%28-3%29%284%29%7D%3D%5Cleft%28a%5E%7B-3%7D%5Cright%29%5E4%5Cqquad%5Ctext%7Bused%7D%5C%20%28a%5En%29%5Em%3Da%5E%7Bnm%7D%5C%5C%5C%5C%5Csqrt%5B4%5D%7B16a%5E%7B-12%7D%7D%3D%5Cbigg%2816a%5E%7B-12%7D%5Cbigg%29%5E%5Cfrac%7B1%7D%7B4%7D%5Cqquad%5Ctext%7Bused%7D%5C%20a%5E%5Cfrac%7B1%7D%7Bn%7D%3D%5Csqrt%5Bn%5D%7Ba%7D%5C%5C%5C%5C%3D%5Cbigg%282%5E4%28a%5E%7B-3%7D%29%5E4%5Cbigg%29%5E%5Cfrac%7B1%7D%7B4%7D%5Cqquad%5Ctext%7Buse%7D%5C%20%28ab%29%5En%3Da%5Enb%5En%5C%5C%5C%5C%3D%5Cbigg%282%5E4%5Cbigg%29%5E%5Cfrac%7B1%7D%7B4%7D%5Cbigg%5B%28a%5E%7B-3%7D%29%5E4%5Cbigg%5D%5E%5Cfrac%7B1%7D%7B4%7D%5Cqquad%5Ctext%7Buse%7D%5C%20%28a%5En%29%5Em%3Da%5E%7Bnm%7D%5C%5C%5C%5C%3D2%5E%7B%284%29%28%5Cfrac%7B1%7D%7B4%7D%29%7D%28a%5E%7B-3%7D%29%5E%7B%284%29%28%5Cfrac%7B1%7D%7B4%7D%29%7D%3D2%5E1%28a%5E%7B-3%7D%29%5E1%3D2a%5E%7B-3%7D%5Cqquad%5Ctext%7Buse%7D%5C%20a%5E%7B-n%7D%3D%5Cdfrac%7B1%7D%7Ba%5En%7D)
