Answer: p-value is 0.016.
Step-by-step explanation:
Since we have given that

Sample mean = 19.4
Sample size n = 50
Standard deviation = 2
We need to find the test statistic value which is given by

p-value is given by

Hence, p-value is 0.016.
Answer:
Step-by-step explanation:
Ur answer should be B
Answer:
{ x | -7 ≤ x ≤ 4 }
Step-by-step explanation:
Bear in mind that, when it comes to trigonometric functions, the location of the exponent can be a bit misleading, however recall that sin²(θ) is really [ sin( θ )]²,
![\bf 2sin^2(2x)=2\implies sin^2(2x)=\cfrac{2}{2} \\\\\\ sin^2(2x)=1\implies [sin(2x)]^2=1\implies sin(2x)=\pm\sqrt{1} \\\\\\ sin(2x)=\pm 1\implies sin^{-1}[sin(2x)]=sin^{-1}(\pm 1)](https://tex.z-dn.net/?f=%5Cbf%202sin%5E2%282x%29%3D2%5Cimplies%20sin%5E2%282x%29%3D%5Ccfrac%7B2%7D%7B2%7D%0A%5C%5C%5C%5C%5C%5C%0Asin%5E2%282x%29%3D1%5Cimplies%20%5Bsin%282x%29%5D%5E2%3D1%5Cimplies%20sin%282x%29%3D%5Cpm%5Csqrt%7B1%7D%0A%5C%5C%5C%5C%5C%5C%0Asin%282x%29%3D%5Cpm%201%5Cimplies%20sin%5E%7B-1%7D%5Bsin%282x%29%5D%3Dsin%5E%7B-1%7D%28%5Cpm%201%29)
Answer:
Divide both sides by 6 :)