Answer:
no solution
Step-by-step explanation:
<em>AC bisects ∠BAD, => ∠BAC=∠CAD ..... (1)</em>
<em>thus in ΔABC and ΔADC, ∠ABC=∠ADC (given), </em>
<em> ∠BAC=∠CAD [from (1)],</em>
<em>AC (opposite side side of ∠ABC) = AC (opposite side side of ∠ADC), the common side between ΔABC and ΔADC</em>
<em>Hence, by AAS axiom, ΔABC ≅ ΔADC,</em>
<em>Therefore, BC (opposite side side of ∠BAC) = DC (opposite side side of ∠CAD), since (1)</em>
<em />
Hence, BC=DC proved.
Answer:
TRUE
Step-by-step explanation:
Lateral area of cone is given by: πrl
where r is the radius and l is the slant height
Here r=r and l=2h
Hence, lateral area of cone A= π×r×2h
= 2πrh
Lateral area of cylinder is given by: 2πrh
where r is the radius and h is the height
Lateral area of cylinder B=2πrh
Clearly, both the lateral areas are equal
Hence, the statement that:The lateral surface area of cone A is equal to the lateral surface area of cylinder B. is:
True
Answer:
37.50 and 84.97
Step-by-step explanation: