Answer:
For example, if given a graph, you could use the vertical line test; if a vertical line intersects the graph more than once, then the relation that the graph represents is not a function.
Hope this helped
Its an indirect proof, so 3 steps :-
1) you start with the opposite of wat u need to prove
2) arrive at a contradiction
3) concludeReport · 29/6/2015261
since you wanto prove 'diagonals of a parallelogram bisect each other', you start wid the opposite of above statement, like below :- step1 : Since we want to prove 'diagonals of a parallelogram bisect each other', lets start by assuming the opposite, that the diagonals of parallelogram dont bisect each other.Report · 29/6/2015261
Since, we assumed that the diagonals dont bisect each other,
OC≠OA
OD≠OBReport · 29/6/2015261
Since, OC≠OA, △OAD is not congruent to △OCBReport · 29/6/2015261
∠AOD≅∠BOC as they are vertical angles,
∠OAD≅∠OCB they are alternate interior angles
AD≅BC, by definition of parallelogram
so, by AAS, △OAD is congruent to △OCBReport · 29/6/2015261
But, thats a contradiction as we have previously established that those triangles are congruentReport · 29/6/2015261
step3 :
since we arrived at a contradiction, our assumption is wrong. so, the opposite of our assumption must be correct. so diagonals of parallelogram bisect each other.
85 is a <span>26.865671641791% higher than 67
Hope this helps!!
</span>
Answer:
51.1 ≈ r
Step-by-step explanation:
"A bicycle wheel travels 321 in for each revolution"- means that 321 is the circumference of the wheel that is a circle.
C = 2· π· r
What is the radius of the wheel ?
321 = 2· π· r, divide both sides of the equation by 2 π
(321/2·π) = r , use calculator, solve and round the answer
51.1 ≈ r