Answer:
Convert the age to a z-score:
Step-by-step explanation:
Let X be the random variable with mean 27.2 and standard deviation 3.8.
Here, the observation, x is 24.
Answer: Los catetos medirán 12m y 9m.
Step-by-step explanation:
Bueno, sabemos que los lados de nuestro triangulo son 6m, 8m y 10m.
Podemos usar relaciones trigonométricas para encontrar los ángulos de este triangulo.
Cos(X) = cateto adyacente/hipotenusa
Si tomamos al cateto adyacente como 8m, tenemos:
Cos(X) = 8m/10m
X = Acos(8/10)
Esto nos dice que para que nuestro otro triangulo rectángulo sea equivalente al primero, entonces los nuevos catetos C1 y C2 tienen que ser tal que los cocientes entre los catetos y la hipotenusa se mantengan constantes:
C1/15m = 8m/10m
C1 = (8/10)*15m = 12m
C2/15m = 6m/10m
C2 = (6/10)*15m = 9m.
If a squareroot is multiplied by the same (like your example) it turns the number in squareroot as natural number.
squareroot 13 • 3 squareroot 13 = 13•3= 39
Hope it helps!
#MissionExam001
9514 1404 393
Answer:
(√5)/2
Step-by-step explanation:
Of the several ways I can think of to do this, using a graphing calculator is about the easiest. It shows the minimum to be ...
f(1) = √1.25 = (√5)/2
__
Using the distance formula, you have ...
f(x) = √((x -(-2))² +((x² +2)-5/2)²)
f(x) = √(x² +4x +4 +x⁴ -x² +1/4) = √(x⁴ +4x +17/4)
The minimum is found where the derivative is zero.
f'(x) = (2x³ +2)/√(x⁴ +4x +17/4) = 0
x³ = -1 . . . . . f'(x) is zero when the numerator is zero
x = -1 . . . . . cube root
Then the minimum value of f(x) is ...
f(-1) = √(x⁴ +4x +17/4) = √((-1)⁴ +4(-1) +17/4) = √(1 -4 +17/4) = √(5/4)
f(-1) = (√5)/2 . . . . minimum value of f(x)
__
The graph shows f²(x) in red and its minimum of 1.25 = 5/4. The curve (x, x²+2) and the point (-2, 5/2) are also shown, for reference. (The slope of the curve at x=-1 is -2, and the normal to the curve at that point has slope 1/2. The normal goes through the point (-2, 5/2), consistent with f(x) being a minimum at x=-1.)
Answer:
The distance around a circle.
hope it helps you
=]