La franja amarilla del rectángulo tiene un área de 30 centímetros cuadrados.
<h3>¿Cuál es el área de la franja amarilla del rectángulo?</h3>
En este problema tenemos un rectángulo formado por dos cuadrados que se traslapan uno al otro. La franja amarilla es el área en la que los cuadrados se traslapan. La anchura del rectángulo es descrita por la siguiente ecuación:
(10 - x) + 2 · x = 17
Donde x se mide en centímetros.
A continuación, despejamos x en la ecuación descrita:
10 + x = 17
x = 7
Ahora, el área de la franja amarilla se determina mediante la fórmula de area de un rectángulo:
A = b · h
Donde:
- b - Base del rectángulo, en centímetros.
- h - Altura del rectángulo, en centímetros.
- A - Área del rectángulo, en centímetros cuadrados.
A = (10 - 7) · 10
A = 3 · 10
A = 30
El área de la franja amarilla del rectángulo es igual a 30 centímetros cuadrados.
Para aprender más sobre áreas de rectángulos: brainly.com/question/23058403
#SPJ1
Answer:,n ,
Step-by-step explanation:
By functional analysis we have the following conclusion about the function given: The domain for f(x) is all real numbers greater than or equal to 2.
<h3>How to determine the domain of a function with radical components</h3>
Domain is the set of x-values such that the value of the function exists. By algebra we know that the domain of polynomials is the set of all <em>real</em> numbers, whereas the domain of <em>radical</em> functions is the set of x-values such that y ≥ 0. If we know that f(x) = 2 · x² + 5 · √(x - 2), then the domain is restricted by the <em>radical</em> component and defined by x ≥ 2.
By functional analysis we have the following conclusion about the function given: The domain for f(x) is all real numbers greater than or equal to 2.
To learn more on functions: brainly.com/question/12431044
#SPJ1
A prime number is a whole number greater than 1 , whose only two whole number are 1 and itself. The first few prime numbers are 2, 3, 5, 7, 11, 13, 17, 19, 23, and 29.
Hope this helped you! ^^
Answer:
2x+5y= -∞>-35<∞
Step-by-step explanation:
What are the options?