1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
andre [41]
3 years ago
6

Klara has 3 bowls. She puts 6 peaches in each bowl. She has 4 peaches left over. How many peaches did Klara start with in all?

Mathematics
1 answer:
shepuryov [24]3 years ago
5 0

Answer:

22 peaches

Step-by-step explanation:

I hope this help! :)

You might be interested in
Is (1, 2) solution for this system of inequalities ?
diamong [38]

Answer:

MAYBE

Step-by-step explanation:

7 0
3 years ago
If <img src="https://tex.z-dn.net/?f=%5Cmathrm%20%7By%20%3D%20%28x%20%2B%20%5Csqrt%7B1%2Bx%5E%7B2%7D%7D%29%5E%7Bm%7D%7D" id="Tex
Harman [31]

Answer:

See below for proof.

Step-by-step explanation:

<u>Given</u>:

y=\left(x+\sqrt{1+x^2}\right)^m

<u>First derivative</u>

\boxed{\begin{minipage}{5.4 cm}\underline{Chain Rule for Differentiation}\\\\If  $f(g(x))$ then:\\\\$\dfrac{\text{d}y}{\text{d}x}=f'(g(x))\:g'(x)$\\\end{minipage}}

<u />

<u />\boxed{\begin{minipage}{5 cm}\underline{Differentiating $x^n$}\\\\If  $y=x^n$, then $\dfrac{\text{d}y}{\text{d}x}=xn^{n-1}$\\\end{minipage}}

<u />

\begin{aligned} y_1=\dfrac{\text{d}y}{\text{d}x} & =m\left(x+\sqrt{1+x^2}\right)^{m-1} \cdot \left(1+\dfrac{2x}{2\sqrt{1+x^2}} \right)\\\\ & =m\left(x+\sqrt{1+x^2}\right)^{m-1} \cdot \left(1+\dfrac{x}{\sqrt{1+x^2}} \right) \\\\ & =m\left(x+\sqrt{1+x^2}\right)^{m-1} \cdot \left(\dfrac{x+\sqrt{1+x^2}}{\sqrt{1+x^2}} \right)\\\\ & = \dfrac{m}{\sqrt{1+x^2}} \cdot \left(x+\sqrt{1+x^2}\right)^{m-1}  \cdot \left(x+\sqrt{1+x^2}\right)\\\\ & = \dfrac{m}{\sqrt{1+x^2}}\left(x+\sqrt{1+x^2}\right)^m\end{aligned}

<u>Second derivative</u>

<u />

\boxed{\begin{minipage}{5.5 cm}\underline{Product Rule for Differentiation}\\\\If  $y=uv$  then:\\\\$\dfrac{\text{d}y}{\text{d}x}=u\dfrac{\text{d}v}{\text{d}x}+v\dfrac{\text{d}u}{\text{d}x}$\\\end{minipage}}

\textsf{Let }u=\dfrac{m}{\sqrt{1+x^2}}

\implies \dfrac{\text{d}u}{\text{d}x}=-\dfrac{mx}{\left(1+x^2\right)^\frac{3}{2}}

\textsf{Let }v=\left(x+\sqrt{1+x^2}\right)^m

\implies \dfrac{\text{d}v}{\text{d}x}=\dfrac{m}{\sqrt{1+x^2}} \cdot \left(x+\sqrt{1+x^2}\right)^m

\begin{aligned}y_2=\dfrac{\text{d}^2y}{\text{d}x^2}&=\dfrac{m}{\sqrt{1+x^2}}\cdot\dfrac{m}{\sqrt{1+x^2}}\cdot\left(x+\sqrt{1+x^2}\right)^m+\left(x+\sqrt{1+x^2}\right)^m\cdot-\dfrac{mx}{\left(1+x^2\right)^\frac{3}{2}}\\\\&=\dfrac{m^2}{1+x^2}\cdot\left(x+\sqrt{1+x^2}\right)^m+\left(x+\sqrt{1+x^2}\right)^m\cdot-\dfrac{mx}{\left(1+x^2\right)\sqrt{1+x^2}}\\\\ &=\left(x+\sqrt{1+x^2}\right)^m\left(\dfrac{m^2}{1+x^2}-\dfrac{mx}{\left(1+x^2\right)\sqrt{1+x^2}}\right)\\\\\end{aligned}

              = \dfrac{\left(x+\sqrt{1+x^2}\right)^m}{1+x^2}\right)\left(m^2-\dfrac{mx}{\sqrt{1+x^2}}\right)

<u>Proof</u>

  (x^2+1)y_2+xy_1-m^2y

= (x^2+1) \dfrac{\left(x+\sqrt{1+x^2}\right)^m}{1+x^2}\left(m^2-\dfrac{mx}{\sqrt{1+x^2}}\right)+\dfrac{mx}{\sqrt{1+x^2}}\left(x+\sqrt{1+x^2}\right)^m-m^2\left(x+\sqrt{1+x^2\right)^m

= \left(x+\sqrt{1+x^2}\right)^m\left(m^2-\dfrac{mx}{\sqrt{1+x^2}}\right)+\dfrac{mx}{\sqrt{1+x^2}}\left(x+\sqrt{1+x^2}\right)^m-m^2\left(x+\sqrt{1+x^2\right)^m

= \left(x+\sqrt{1+x^2}\right)^m\left[m^2-\dfrac{mx}{\sqrt{1+x^2}}+\dfrac{mx}{\sqrt{1+x^2}}-m^2\right]

= \left(x+\sqrt{1+x^2}\right)^m\left[0]

= 0

8 0
1 year ago
What is the square root of 1000/100000
Mrac [35]
Remember that \sqrt{\frac{x}{y} }= \frac{ \sqrt{x} }{ \sqrt{y} } so
\sqrt{\frac{1000}{100000} }= \frac{ \sqrt{1000} }{ \sqrt{100000} }
find the individual square roots
\frac{ \sqrt{1000} }{ \sqrt{100000} }=\frac{ 10\sqrt{10} }{ 100\sqrt{10} } = \frac{10}{100} times \frac{ \sqrt{10} }{ \sqrt{10} }  = \frac{10}{100}   times 1= \frac{1}{10}

answer is 1/10
7 0
3 years ago
Read 2 more answers
What is the range for the graph below?
mario62 [17]

Answer:

All real numbers except -3

Step-by-step explanation:

Range refers to numbers on the y-axis.

Domain refers to numbers on the x-axis.

Both of those lines will never reach -3, just come extremely close to it.

6 0
3 years ago
How do you figure out a multiplecation equation​
Yuki888 [10]

Equations and Inequalities - Multiplication equations - First Glance. To solve a multiplication equation, use the inverse operation of division. Divide both sides by the same non-zero number. Click the equation to see how to solve it.

7 0
4 years ago
Other questions:
  • Choose a counterexample that proves that the conjecture below is false.. abc is a right triangle, so angle A measures 90 degrees
    10·2 answers
  • New flowers are being planted in a circular bed with a 14 foot diameter. If each flower requires 1 square foot of space, how man
    7·1 answer
  • How many tens is in 3980
    13·1 answer
  • 6. Find the value of x.<br><br> A.30<br> B.25<br> C.35<br> D.20
    9·1 answer
  • A rectangle pool in in your friends yard is 150 x 400 ft
    9·1 answer
  • Does anyone know the answer ?, thank you
    10·2 answers
  • Answer number 11 pls
    8·1 answer
  • 10. A wire is of length 264 cm. It is bent into a circle. What is the radius of the circle so obtained. If it
    7·1 answer
  • Find the value of y.<br> (27x + 4)<br> (8x + 1)<br> (y + 10)
    6·1 answer
  • The bookstore sells packages of 15 pens
    8·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!