The formula for the slope of a line between two points is m=y2-y1/x2-x1. Substitute the given coordinates into this equation and solve:
m=(48-12)/(32-34)=36/-2= -18
The slope is -18
Answer:
1,804
Step-by-step explanation:
106 - 60 = 44
44/2 = 22
60 + 22 = 82
82*22 = 1,804
Answer:
A. 2
Step-by-step explanation:
y = 2m + 6
- _2_
_2m_ = _4_
2 2
m = 2
MARK ME BRAINLIEST!!!!!!!!
Answer:
linear
Step-by-step explanation:
Answer:
Lamda= 4 students/min, µ= 5 students/min
P= Lamda/µ= 4/5= 0.8
a.) Probability that system is empty= P0= 1-P= 1-0.8= 0.2
b.) Probability of more than 2 students in the system= ∑(n=3 to inf) P^n*P0= (1-P)*(1/(1-P) – (1-P) –(1-P)*P –(1-P)*P^2)= (.2)*(5- - .2 - (.8)*.2 – (.2)*.8^2))= 0.848
Probability of more than 3 students in the system= ∑(n=4 to inf) P^n*P0= (1-P)*(1/(1-P) – (1-P) –(1-P)*P –(1-P)*P^2 – (1-P)*P^3)= 0.768
c.) W(q)= Waiting time in Queue= lamda/µ(µ- lamda)= 4/5(1)= 0.8 minutes
d.) L(q)= lamda*W(q)= 4*.8= 3.2 students
e.) L(System)= lamda/(µ-lamda)= 4 students.
f.) If another server with same efficiency as the 1st one is added, then µ= 6 sec/student= 10 students/min.
P= 4/10= 0.4
Probability that system is empty= P0= 1-.4= 0.6
W(q)= 4/10(10-4)= 0.0667 minutes
L(q)= Lamda*W(q)= 4*.0667=0.2668
L(system)= Lamda/(µ-lamda)= 4/6= .667
Step-by-step explanation: