*im sorry but I cant see the bottom number but I'll consider it as x
tan 45° = 3/x
x = 3/tan45
x is 3
hope this helps :)
Answer:
Step-by-step explanation:
16=5p-6
17=y
The volume of the region R bounded by the x-axis is: ![\mathbf{\iint_R(x^2+y^2)dA = \int ^{tan^{-1}(4)}_{0} \int^{\frac{2}{cos \theta}}_{0} \ r^3 dr d\theta}](https://tex.z-dn.net/?f=%5Cmathbf%7B%5Ciint_R%28x%5E2%2By%5E2%29dA%20%3D%20%5Cint%20%5E%7Btan%5E%7B-1%7D%284%29%7D_%7B0%7D%20%5Cint%5E%7B%5Cfrac%7B2%7D%7Bcos%20%5Ctheta%7D%7D_%7B0%7D%20%5C%20r%5E3%20dr%20d%5Ctheta%7D)
<h3>What is the volume of the solid (R) on the X-axis?</h3>
If the axis of revolution is the boundary of the plane region and the cross-sections are parallel to the line of revolution, we may use the polar coordinate approach to calculate the volume of the solid.
From the given graph:
The given straight line passes through two points (0,0) and (2,8). Thus, the equation of the straight line becomes:
![\mathbf{y-y_1 = \dfrac{y_2-y_1}{x_2-x_1}(x-x_1)}](https://tex.z-dn.net/?f=%5Cmathbf%7By-y_1%20%3D%20%5Cdfrac%7By_2-y_1%7D%7Bx_2-x_1%7D%28x-x_1%29%7D)
here:
- (x₁, y₁) and (x₂, y₂) are two points on the straight line
Suppose we assign (x₁, y₁) = (0, 0) and (x₂, y₂) = (2, 8) from the graph, we have:
![\mathbf{y-0 = \dfrac{8-0}{2-0}(x-0)}](https://tex.z-dn.net/?f=%5Cmathbf%7By-0%20%3D%20%5Cdfrac%7B8-0%7D%7B2-0%7D%28x-0%29%7D)
y = 4x
Now, our region bounded by the three lines are:
Similarly, the change in polar coordinates is:
where;
- x² + y² = r² and dA = rdrdθ
Therefore;
- rsinθ = 0 i.e. r = 0 or θ = 0
- rcosθ = 2 i.e. r = 2/cosθ
- rsinθ = 4(rcosθ) ⇒ tan θ = 4; θ = tan⁻¹ (4)
- ⇒ r = 0 to r = 2/cosθ
- θ = 0 to θ = tan⁻¹ (4)
Then:
![\mathbf{\iint_R(x^2+y^2)dA = \int ^{tan^{-1}(4)}_{0} \int^{\frac{2}{cos \theta}}_{0} \ r^2 (rdr d\theta )}](https://tex.z-dn.net/?f=%5Cmathbf%7B%5Ciint_R%28x%5E2%2By%5E2%29dA%20%3D%20%5Cint%20%5E%7Btan%5E%7B-1%7D%284%29%7D_%7B0%7D%20%5Cint%5E%7B%5Cfrac%7B2%7D%7Bcos%20%5Ctheta%7D%7D_%7B0%7D%20%5C%20r%5E2%20%28rdr%20d%5Ctheta%20%29%7D)
![\mathbf{\iint_R(x^2+y^2)dA = \int ^{tan^{-1}(4)}_{0} \int^{\frac{2}{cos \theta}}_{0} \ r^3 dr d\theta}](https://tex.z-dn.net/?f=%5Cmathbf%7B%5Ciint_R%28x%5E2%2By%5E2%29dA%20%3D%20%5Cint%20%5E%7Btan%5E%7B-1%7D%284%29%7D_%7B0%7D%20%5Cint%5E%7B%5Cfrac%7B2%7D%7Bcos%20%5Ctheta%7D%7D_%7B0%7D%20%5C%20r%5E3%20dr%20d%5Ctheta%7D)
Learn more about the determining the volume of solids bounded by region R here:
brainly.com/question/14393123
#SPJ1
The lowest terms for 19/31 would be 1