The number of bottles in a full box is 12.
<u><em>Explanation</em></u>
Suppose, the number of bottles in a full box is 
So, the number of bottles in <u>three</u> full boxes 
Now, two more boxes are added, both of which have <u>one fewer bottle than the other three</u>. So, the number of bottles in these two boxes 
As there were 9 bottles initially and now there are 67 bottles in the fridge, <em><u>so the equation will be</u></em>....

Thus, the number of bottles in a full box is 12.
Answer: 5-35i
Step-by-step explanation:
I have no explanation. I'm sorry.
Answer:
- The general solution is

- The error in the approximations to y(0.2), y(0.6), and y(1):



Step-by-step explanation:
<em>Point a:</em>
The Euler's method states that:
where 
We have that
,
,
, 
- We need to find
for
, when
,
using the Euler's method.
So you need to:




- We need to find
for
, when
,
using the Euler's method.
So you need to:




The Euler's Method is detailed in the following table.
<em>Point b:</em>
To find the general solution of
you need to:
Rewrite in the form of a first order separable ODE:

Integrate each side:



We know the initial condition y(0) = 3, we are going to use it to find the value of 

So we have:

Solving for <em>y</em> we get:

<em>Point c:</em>
To compute the error in the approximations y(0.2), y(0.6), and y(1) you need to:
Find the values y(0.2), y(0.6), and y(1) using 



Next, where
are from the table.



Answer:
Step-by-step explanation:
<u>Given:</u>
Area of the base :
Height of cylinder:
<u>The volume is:</u>
- V = Bh
- V = 50.24*3 = 150.72 ft³
<h3>Answer: Choice B) </h3><h3>-6x - 2y = 12</h3>
===============================================
Explanation:
The x intercept is (-2,0) which is where the graph crosses the x axis.
The y intercept is (0,-6) which is where the graph crosses the y axis.
-----
Find the slope of the line through those two points
m = (y2-y1)/(x2-x1)
m = (-6-0)/(0-(-2))
m = (-6-0)/(0+2)
m = -6/2
m = -3
-----
The y intercept (0,-6) leads to b = -6
Both m = -3 and b = -6 plug into y = mx+b to get
y = mx+b
y = -3x+(-6)
y = -3x-6
-----
Now add 3x to both sides
y = -3x-6
y+3x = -3x-6+3x
3x+y = -6
-----
Lastly, multiply both sides by -2 so that the "-6" on the right hand side turns into "12" (each answer choice has 12 on the right hand side)
3x+y = -6
-2(3x+y) = -2(-6)
-2(3x)-2(y) = 12
-6x-2y = 12
which is what choice B shows.