Answer:
35g^2 +38g +8
Step-by-step explanation:
Answer:
Step-by-step explanation:
because <u>c</u> is shorter than<u> a</u> we know C is a smaller angle than A
so the first choice is out.
use the law of cosines to find b
= 
=1681+400-1326.787871
= 754.21219
b= 
b= 27.46292
so the last choice looks good
Answer:
P ≈ 48.89°(nearest hundredth)
Step-by-step explanation:
The triangle PQR forms a right angle triangle since angle R is 90°. The triangle has an hypotenuse , adjacent and opposite side.
Using the SOHCAHTOA principle one can find the sine ratio of angle P. Let us designate where each side represent.
opposite side(QR) = 55
adjacent side(PR) = 48
hypotenuse(PQ) = 73
sin P = opposite/hypotenuse
sin P = 55/73
P = sin⁻¹ 55/73
P = sin⁻¹ 0.75342465753
P = 48.8879095605
P ≈ 48.89°(nearest hundredth)
Answer:
![15 \sqrt[3]{2}](https://tex.z-dn.net/?f=15%20%5Csqrt%5B3%5D%7B2%7D%20)
Step-by-step explanation:
![{(27 \times 250)}^{ \frac{1}{3} } = {(27 \times 125 \times 2)}^{ \frac{1}{3} } \\ = {27}^{ \frac{1}{3} } \times {125}^{ \frac{1}{3} } \times {2}^{ \frac{1}{3} } \\ = \sqrt[ 3]{27} \times \sqrt[3]{125} \times \sqrt[3]{2} \\ = \sqrt[3]{ {3}^{3} } \times \sqrt[3]{ {5}^{3} } \times \sqrt[3]{2} \\ = 3 \times 5 \times \sqrt[3]{2} \\ = 15 \sqrt[3]{2}](https://tex.z-dn.net/?f=%20%7B%2827%20%5Ctimes%20250%29%7D%5E%7B%20%5Cfrac%7B1%7D%7B3%7D%20%7D%20%20%3D%20%20%7B%2827%20%5Ctimes%20125%20%5Ctimes%202%29%7D%5E%7B%20%5Cfrac%7B1%7D%7B3%7D%20%7D%20%20%5C%5C%20%20%3D%20%20%7B27%7D%5E%7B%20%5Cfrac%7B1%7D%7B3%7D%20%7D%20%20%5Ctimes%20%20%7B125%7D%5E%7B%20%5Cfrac%7B1%7D%7B3%7D%20%7D%20%20%5Ctimes%20%20%7B2%7D%5E%7B%20%5Cfrac%7B1%7D%7B3%7D%20%7D%20%20%5C%5C%20%20%3D%20%20%5Csqrt%5B%203%5D%7B27%7D%20%20%5Ctimes%20%20%5Csqrt%5B3%5D%7B125%7D%20%20%5Ctimes%20%20%5Csqrt%5B3%5D%7B2%7D%20%20%5C%5C%20%20%3D%20%20%5Csqrt%5B3%5D%7B%20%7B3%7D%5E%7B3%7D%20%7D%20%20%5Ctimes%20%20%5Csqrt%5B3%5D%7B%20%7B5%7D%5E%7B3%7D%20%7D%20%20%5Ctimes%20%20%5Csqrt%5B3%5D%7B2%7D%20%20%5C%5C%20%20%3D%203%20%5Ctimes%205%20%5Ctimes%20%20%5Csqrt%5B3%5D%7B2%7D%20%20%5C%5C%20%20%3D%2015%20%5Csqrt%5B3%5D%7B2%7D%20)
Keywords:
<em>Variables, televisions, generic version, TV brand, dimensions
</em>
For this case we have two televisions, one generic version and one brand. We know that the generic version represents
the size of the brand. We must define two variables that represent the dimensions of the brand TV, so we have:
Dimensions of the generic TV:

So:


By clearing the variables we have:

Thus, the dimensions of the brand TV are 18 inches by 36 inches
Answer:
The dimensions of the brand TV are 18 inches by 36 inches