1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
lubasha [3.4K]
2 years ago
12

I have no idea what I’m doing please help!! the number 4.121221222... is... *

Mathematics
1 answer:
andriy [413]2 years ago
5 0

Answer:

the answer is real, irrational

You might be interested in
Use the elimination method to solve the system of equations. Choose the
IRINA_888 [86]

Answer: x=6

Y=6

Step-by-step explanation:

Using the elimination method

3x+5y=48.....equ1

-3x+5y=12......equ2

Add equation 1 &2

3x+5y=48

+

-3x+5y=12

Answer =

10y=60

Y=60/10

Y=6

Substitute for y in equation 1

3x+5y=48

3x+5(6)=48

3x+30=48

3x=48-30

3x=18

X=18/3

X=6

Therefore,

X= 6

Y= 6

4 0
3 years ago
Read 2 more answers
A simple association forms between two events when ___________
qaws [65]

Answer:

The events occur together

Step-by-step explanation:

A simple association forms between two events when these events occur together dependently.One event will rely on another to happen first for it to take place.In this case, the occurrence of one event influences the probability of the other event happening.

7 0
3 years ago
Please answer this question, i request
Jet001 [13]

{\large{\textsf{\textbf{\underline{\underline{Given :}}}}}}

\star  \:  \tt \cot  \theta = \dfrac{7}{8}

{\large{\textsf{\textbf{\underline{\underline{To \: Evaluate :}}}}}}

\star \:  \tt \dfrac{(1  +  \sin \theta)(1 - \sin \theta) }{(1 +  \cos \theta) (1  -  \cos \theta) }

{\large{\textsf{\textbf{\underline{\underline{Solution :}}}}}}

Consider a \triangle ABC right angled at C and \sf \angle \: B = \theta

Then,

‣ Base [B] = BC

‣ Perpendicular [P] = AC

‣ Hypotenuse [H] = AB

\therefore \tt \cot  \theta   =  \dfrac{Base}{ Perpendicular}  =  \dfrac{BC}{AC} = \dfrac{7}{8}

Let,

Base = 7k and Perpendicular = 8k, where k is any positive integer

In \triangle ABC, H² = B² + P² by Pythagoras theorem

\longrightarrow \tt {AB}^{2}  =   {BC}^{2}  +   {AC}^{2}

\longrightarrow \tt {AB}^{2}  =   {(7k)}^{2}  +   {(8k)}^{2}

\longrightarrow \tt {AB}^{2}  =   49{k}^{2}  +   64{k}^{2}

\longrightarrow \tt {AB}^{2}  =   113{k}^{2}

\longrightarrow \tt AB  =   \sqrt{113  {k}^{2} }

\longrightarrow \tt AB = \red{  \sqrt{113}  \:  k}

Calculating Sin \sf \theta

\longrightarrow  \tt \sin \theta = \dfrac{Perpendicular}{Hypotenuse}

\longrightarrow  \tt \sin \theta = \dfrac{AC}{AB}

\longrightarrow  \tt \sin \theta = \dfrac{8 \cancel{k}}{ \sqrt{113} \: \cancel{ k } }

\longrightarrow  \tt \sin \theta =  \purple{  \dfrac{8}{ \sqrt{113} } }

Calculating Cos \sf \theta

\longrightarrow  \tt \cos \theta = \dfrac{Base}{Hypotenuse}

\longrightarrow  \tt \cos \theta =  \dfrac{BC}{ AB}

\longrightarrow  \tt \cos \theta =  \dfrac{7 \cancel{k}}{ \sqrt{113} \:  \cancel{k } }

\longrightarrow  \tt \cos \theta =  \purple{ \dfrac{7}{ \sqrt{113} } }

<u>Solving the given expression</u><u> </u><u>:</u><u>-</u><u> </u>

\longrightarrow \:  \tt \dfrac{(1  +  \sin \theta)(1 - \sin \theta) }{(1 +  \cos \theta) (1  -  \cos \theta) }

Putting,

• Sin \sf \theta = \dfrac{8}{ \sqrt{113} }

• Cos \sf \theta = \dfrac{7}{ \sqrt{113} }

\longrightarrow \:  \tt \dfrac{ \bigg(1 +  \dfrac{8}{ \sqrt{133}} \bigg) \bigg(1 - \dfrac{8}{ \sqrt{133}} \bigg) }{\bigg(1 +  \dfrac{7}{ \sqrt{133}} \bigg) \bigg(1 - \dfrac{7}{ \sqrt{133}} \bigg)}

<u>Using</u><u> </u><u>(</u><u>a</u><u> </u><u>+</u><u> </u><u>b</u><u> </u><u>)</u><u> </u><u>(</u><u>a</u><u> </u><u>-</u><u> </u><u>b</u><u> </u><u>)</u><u> </u><u>=</u><u> </u><u>a²</u><u> </u><u>-</u><u> </u><u>b²</u>

\longrightarrow \:  \tt  \dfrac{ { \bigg(1 \bigg)}^{2}  -  { \bigg(  \dfrac{8}{ \sqrt{133} } \bigg)}^{2}   }{ { \bigg(1 \bigg)}^{2}  -  { \bigg(  \dfrac{7}{ \sqrt{133} } \bigg)}^{2}  }

\longrightarrow \:  \tt   \dfrac{1 -  \dfrac{64}{113} }{ 1 - \dfrac{49}{113} }

\longrightarrow \:  \tt   \dfrac{ \dfrac{113 - 64}{113} }{  \dfrac{113 - 49}{113} }

\longrightarrow \:  \tt { \dfrac  { \dfrac{49}{113} }{  \dfrac{64}{113} } }

\longrightarrow \:  \tt   { \dfrac{49}{113} }÷{  \dfrac{64}{113} }

\longrightarrow \:  \tt    \dfrac{49}{ \cancel{113}} \times     \dfrac{ \cancel{113}}{64}

\longrightarrow \:  \tt   \dfrac{49}{64}

\qquad  \:  \therefore  \:  \tt \dfrac{(1  +  \sin \theta)(1 - \sin \theta) }{(1 +  \cos \theta) (1  -  \cos \theta) }  =   \pink{\dfrac{49}{64} }

\begin{gathered} {\underline{\rule{300pt}{4pt}}} \end{gathered}

{\large{\textsf{\textbf{\underline{\underline{We \: know :}}}}}}

✧ Basic Formulas of Trigonometry is given by :-

\begin{gathered}\begin{gathered}\boxed { \begin{array}{c c} \\ \bigstar \:  \sf{ In \:a \:Right \:Angled \: Triangle :}  \\ \\ \sf {\star Sin \theta = \dfrac{Perpendicular}{Hypotenuse}} \\\\ \sf{ \star \cos \theta = \dfrac{ Base }{Hypotenuse}}\\\\ \sf{\star \tan \theta = \dfrac{Perpendicular}{Base}}\\\\ \sf{\star \cosec \theta = \dfrac{Hypotenuse}{Perpendicular}} \\\\ \sf{\star \sec \theta = \dfrac{Hypotenuse}{Base}}\\\\ \sf{\star \cot \theta = \dfrac{Base}{Perpendicular}} \end{array}}\\\end{gathered} \end{gathered}

{\large{\textsf{\textbf{\underline{\underline{Note :}}}}}}

✧ Figure in attachment

\begin{gathered} {\underline{\rule{200pt}{1pt}}} \end{gathered}

3 0
2 years ago
PLEASE HELP!! I NEED HELP WITH THIS PROBLEM ASAP!! IF YOU HELP I'LL GIVE U BRAINLIEST!
I am Lyosha [343]

Let the amount Tom does = x

Then Larissa’s time would be 3x( 3 times the amount of Tom)

And Neal would also be 3x

The total of the 3 is 84 hours so as an equation you have:

X + 3x + 3x = 84

Combine like terms

7x = 84

Divide both sides by 7

X = 84/7

X = 12 hours

Tom = x, so Tom exercised for 12 hours.

8 0
3 years ago
Find an equation of the line having slope -2 that passes through the point (1, 5)
Alenkasestr [34]
Slope of -2, (1,5)

y = mx + b
slope(m) = -2
(1,5)...x = 1 and y = 5
now we sub and find b, the y int
5 = -2(1) + b
5 = -2 + b
5 + 2 = b
7 = b
so ur equation is : y = -2x + 7

The approximation method used to estimate a point between 2 given points is called linear interpolation. The approximation method used to estimate a point that does not lie between 2 given points is called linear extrapolation.A linear function has the form f(x) = mx + b. Its graph is a line that has slope m and y intercept at (0,b).

8 0
3 years ago
Read 2 more answers
Other questions:
  • Please help me with this for points
    10·1 answer
  • Sally begins hiking at an elevation of 224 ft then she descends 131 ft and climbs 67 feet higher than her current position she t
    5·1 answer
  • Find exact value of <br>sin 7pi/4
    6·2 answers
  • Ilene is playing in a basketball tournament and scored 24 points in her first game. If she averages over 20 points for both game
    7·1 answer
  • Henry needs to rent a tractor. Jim Bob’s Equipment rentals rents tractors for a delivery fee of $230 plus an additional $14 per
    13·1 answer
  • If the exterior sides of adjacent angles are opposite rays, then the angles are ____________ and add to ______ degrees.
    8·1 answer
  • A community garden club has 600 members in three
    10·2 answers
  • Help me please (do the highlighted ones only​
    8·1 answer
  • The selling price of a car is $13,500. Each year, it loses 11% of its value. Find the exponential function that gives the value
    13·1 answer
  • Sam rented a bike one day in the summer. He paid $68 an hour and a rental fee of $85.00 If Sam paid $ 357.00 for the day, how ma
    13·2 answers
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!