4-3<9
5-3<9
6-3<9
and so on...
Answer:
∑ (-1)ⁿ⁺³ 1 / (n^½)
∑ (-1)³ⁿ 1 / (8 + n)
Step-by-step explanation:
If ∑ an is convergent and ∑│an│is divergent, then the series is conditionally convergent.
Option A: (-1)²ⁿ is always +1. So an =│an│and both series converge (absolutely convergent).
Option B: bn = 1 / (n^⁹/₈) is a p series with p > 1, so both an and │an│converge (absolutely convergent).
Option C: an = 1 / n³ isn't an alternating series. So an =│an│and both series converge (p series with p > 1). This is absolutely convergent.
Option D: bn = 1 / (n^½) is a p series with p = ½, so this is a diverging series. Since lim(n→∞) bn = 0, and bn is decreasing, then an converges. So this is conditionally convergent.
Option E: (-1)³ⁿ = (-1)²ⁿ (-1)ⁿ = (-1)ⁿ, so this is an alternating series. bn = 1 / (8 + n), which diverges. Since lim(n→∞) bn = 0, and bn is decreasing, then an converges. So this is conditionally convergent.
Last year won the lions 16 games last year and into this year the Lions won 20 games.
as the percentage increase is:
20/16
(20/4) / (16/4)
5/4
<span>
1.25 (125%)</span>
The answer is actually 80 degrees, I just took the test.
Step-by-step explanation:
The value of sin(2x) is \sin(2x) = - \frac{\sqrt{15}}{8}sin(2x)=−
8
15
How to determine the value of sin(2x)
The cosine ratio is given as:
\cos(x) = -\frac 14cos(x)=−
4
1
Calculate sine(x) using the following identity equation
\sin^2(x) + \cos^2(x) = 1sin
2
(x)+cos
2
(x)=1
So we have:
\sin^2(x) + (1/4)^2 = 1sin
2
(x)+(1/4)
2
=1
\sin^2(x) + 1/16= 1sin
2
(x)+1/16=1
Subtract 1/16 from both sides
\sin^2(x) = 15/16sin
2
(x)=15/16
Take the square root of both sides
\sin(x) = \pm \sqrt{15/16
Given that
tan(x) < 0
It means that:
sin(x) < 0
So, we have:
\sin(x) = -\sqrt{15/16
Simplify
\sin(x) = \sqrt{15}/4sin(x)=
15
/4
sin(2x) is then calculated as:
\sin(2x) = 2\sin(x)\cos(x)sin(2x)=2sin(x)cos(x)
So, we have:
\sin(2x) = -2 * \frac{\sqrt{15}}{4} * \frac 14sin(2x)=−2∗
4
15
∗
4
1
This gives
\sin(2x) = - \frac{\sqrt{15}}{8}sin(2x)=−
8
15