1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Sunny_sXe [5.5K]
3 years ago
15

the perimeter of a rectangle is 56 m. if the width were doubled and the length were increased by 8 m, then the perimeter would b

e 82 m. what are the dimensions
Mathematics
1 answer:
Natasha2012 [34]3 years ago
3 0
----------------------------------------------------------------
Define x and y:
----------------------------------------------------------------
Let the length be x.
Let the width be y.

----------------------------------------------------------------
Formula:
----------------------------------------------------------------
Perimeter = 2(Length + Width)

----------------------------------------------------------------
Construct equations and solve for x and y:
----------------------------------------------------------------
2x + 2y = 56            ---------------------- (1)
2(x+8) + 4y = 82     -----------------------(2)

----------------------------------------------------------------
From equation 1:
----------------------------------------------------------------
2x + 2y = 56
x + y = 28
x = 28 - y

----------------------------------------------------------------
From equation 2:
----------------------------------------------------------------
2(x+8) + 4y = 82 
2x + 16 + 4y = 82
2x + 4y = 66
x + 2y = 33

----------------------------------------------------------------
Substitute x = 28 - y into equation 2:
----------------------------------------------------------------
x + 2y = 33
(28 - y) + 2y = 33
28 - y + 2y = 33
y = 5

----------------------------------------------------------------
Substitute y = 5 into equation 1:
----------------------------------------------------------------
x = 28 - y 
x = 28 - 5
x = 23

----------------------------------------------------------------
Find Length and Width
----------------------------------------------------------------
Length = x = 23 m
Width = y = 5m

----------------------------------------------------------------
Answer: Length = 23m and Width = 5m
----------------------------------------------------------------
You might be interested in
the original price of a DVD player was reduced by $45.50. the sale price was $165.90. Solve the following equation to solve the
professor190 [17]

Answer:

211.40

Step-by-step explanation:


7 0
3 years ago
Pls help hurry pls!!!!​
EastWind [94]
1 is B.
I’m not sure what 2 is.
3 is A.
4 is B.
8 0
3 years ago
Bananas sell for $0.49 for 1 pound. How much will 1.31 pounds cost?
tatuchka [14]
ANSWER: 0.64 cents

EXPLANATION: 0.49x1.31 = 0.6419 = 0.64
7 0
3 years ago
Read 2 more answers
Solve for a. Please help!
Marizza181 [45]

Answer:

a = 7

Step-by-step explanation:

This is a special trig triangles. Special trig triangles are identified by their angle measures and their sides have a unique relationship. This is a 30 - 60 - 90 triangle which has sides 1 - √3 - 2 or multiples of this. This means all 30 - 60 - 90 triangles have side lengths with the pattern 1 - √3 - 2. Here the triangle has a - 7√√3 - 14. The value of a is 7 since 7*√3 = 7√3 and 2*7 = 14.

8 0
3 years ago
Solve the system of equations.<br><br><br><br> −2x+5y =−35<br> 7x+2y =25
Otrada [13]

Answer:

The equations have one solution at (5, -5).

Step-by-step explanation:

We are given a system of equations:

\displaystyle{\left \{ {{-2x+5y=-35} \atop {7x+2y=25}} \right.}

This system of equations can be solved in three different ways:

  1. Graphing the equations (method used)
  2. Substituting values into the equations
  3. Eliminating variables from the equations

<u>Graphing the Equations</u>

We need to solve each equation and place it in slope-intercept form first. Slope-intercept form is \text{y = mx + b}.

Equation 1 is -2x+5y = -35. We need to isolate y.

\displaystyle{-2x + 5y = -35}\\\\5y = 2x - 35\\\\\frac{5y}{5} = \frac{2x - 35}{5}\\\\y = \frac{2}{5}x - 7

Equation 1 is now y=\frac{2}{5}x-7.

Equation 2 also needs y to be isolated.

\displaystyle{7x+2y=25}\\\\2y=-7x+25\\\\\frac{2y}{2}=\frac{-7x+25}{2}\\\\y = -\frac{7}{2}x + \frac{25}{2}

Equation 2 is now y=-\frac{7}{2}x+\frac{25}{2}.

Now, we can graph both of these using a data table and plotting points on the graph. If the two lines intersect at a point, this is a solution for the system of equations.

The table below has unsolved y-values - we need to insert the value of x and solve for y and input these values in the table.

\begin{array}{|c|c|} \cline{1-2} \textbf{x} & \textbf{y} \\ \cline{1-2} 0 & a \\ \cline{1-2} 1 & b \\ \cline{1-2} 2 & c \\ \cline{1-2} 3 & d \\ \cline{1-2} 4 & e \\ \cline{1-2} 5 & f \\ \cline{1-2} \end{array}

\bullet \ \text{For x = 0,}

\displaystyle{y = \frac{2}{5}(0) - 7}\\\\y = 0 - 7\\\\y = -7

\bullet \ \text{For x = 1,}

\displaystyle{y=\frac{2}{5}(1)-7}\\\\y=\frac{2}{5}-7\\\\y = -\frac{33}{5}

\bullet \ \text{For x = 2,}

\displaystyle{y=\frac{2}{5}(2)-7}\\\\y = \frac{4}{5}-7\\\\y = -\frac{31}{5}

\bullet \ \text{For x = 3,}

\displaystyle{y=\frac{2}{5}(3)-7}\\\\y= \frac{6}{5}-7\\\\y=-\frac{29}{5}

\bullet \ \text{For x = 4,}

\displaystyle{y=\frac{2}{5}(4)-7}\\\\y = \frac{8}{5}-7\\\\y=-\frac{27}{5}

\bullet \ \text{For x = 5,}

\displaystyle{y=\frac{2}{5}(5)-7}\\\\y=2-7\\\\y=-5

Now, we can place these values in our table.

\begin{array}{|c|c|} \cline{1-2} \textbf{x} & \textbf{y} \\ \cline{1-2} 0 & -7 \\ \cline{1-2} 1 & -33/5 \\ \cline{1-2} 2 & -31/5 \\ \cline{1-2} 3 & -29/5 \\ \cline{1-2} 4 & -27/5 \\ \cline{1-2} 5 & -5 \\ \cline{1-2} \end{array}

As we can see in our table, the rate of decrease is -\frac{2}{5}. In case we need to determine more values, we can easily either replace x with a new value in the equation or just subtract -\frac{2}{5} from the previous value.

For Equation 2, we need to use the same process. Equation 2 has been resolved to be y=-\frac{7}{2}x+\frac{25}{2}. Therefore, we just use the same process as before to solve for the values.

\bullet \ \text{For x = 0,}

\displaystyle{y=-\frac{7}{2}(0)+\frac{25}{2}}\\\\y = 0 + \frac{25}{2}\\\\y = \frac{25}{2}

\bullet \ \text{For x = 1,}

\displaystyle{y=-\frac{7}{2}(1)+\frac{25}{2}}\\\\y = -\frac{7}{2} + \frac{25}{2}\\\\y = 9

\bullet \ \text{For x = 2,}

\displaystyle{y=-\frac{7}{2}(2)+\frac{25}{2}}\\\\y = -7+\frac{25}{2}\\\\y = \frac{11}{2}

\bullet \ \text{For x = 3,}

\displaystyle{y=-\frac{7}{2}(3)+\frac{25}{2}}\\\\y = -\frac{21}{2}+\frac{25}{2}\\\\y = 2

\bullet \ \text{For x = 4,}

\displaystyle{y=-\frac{7}{2}(4)+\frac{25}{2}}\\\\y=-14+\frac{25}{2}\\\\y = -\frac{3}{2}

\bullet \ \text{For x = 5,}

\displaystyle{y=-\frac{7}{2}(5)+\frac{25}{2}}\\\\y = -\frac{35}{2}+\frac{25}{2}\\\\y = -5

And now, we place these values into the table.

\begin{array}{|c|c|} \cline{1-2} \textbf{x} & \textbf{y} \\ \cline{1-2} 0 & 25/2 \\ \cline{1-2} 1 & 9 \\ \cline{1-2} 2 & 11/2 \\ \cline{1-2} 3 & 2 \\ \cline{1-2} 4 & -3/2 \\ \cline{1-2} 5 & -5 \\ \cline{1-2} \end{array}

When we compare our two tables, we can see that we have one similarity - the points are the same at x = 5.

Equation 1                  Equation 2

\begin{array}{|c|c|} \cline{1-2} \textbf{x} & \textbf{y} \\ \cline{1-2} 0 & -7 \\ \cline{1-2} 1 & -33/5 \\ \cline{1-2} 2 & -31/5 \\ \cline{1-2} 3 & -29/5 \\ \cline{1-2} 4 & -27/5 \\ \cline{1-2} 5 & -5 \\ \cline{1-2} \end{array}                 \begin{array}{|c|c|} \cline{1-2} \textbf{x} & \textbf{y} \\ \cline{1-2} 0 & 25/2 \\ \cline{1-2} 1 & 9 \\ \cline{1-2} 2 & 11/2 \\ \cline{1-2} 3 & 2 \\ \cline{1-2} 4 & -3/2 \\ \cline{1-2} 5 & -5 \\ \cline{1-2} \end{array}

Therefore, using this data, we have one solution at (5, -5).

4 0
3 years ago
Other questions:
  • What is two thirds minus three fourths
    6·1 answer
  • Camera costs $940. If the sales tax rate is 4%, what is the total price?
    6·2 answers
  • Which of the following is not in scientific notation?
    6·1 answer
  • Obin can clean 72rooms in 6 days.<br><br>How many rooms can Robin clean in 9 days
    13·1 answer
  • Plz help math
    7·2 answers
  • Order the numbers from least to greatest. −34, 0.5, 23,−73, 1.2 The order of the numbers from least to greatest
    12·2 answers
  • Ok, so I have this math Question it goes like this. Tommy ran 2/3 mile in 1/10 of an hour. Zeke ran 1/4 mile in 1/8 of an hour.
    14·1 answer
  • Helppp will mark brainliest
    8·1 answer
  • 2. Here is an inequality on a number line.
    5·1 answer
  • Whats the answer to this?
    11·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!