Answer:
Look at the proof down
Step-by-step explanation:
The given is;
→ ∠1 and ∠2 form a linear pair
→ ∠1 ≅ ∠3
We want to prove;
→ ∠2 and ∠3 are supplementary
<em>We will write the proof in like a table</em>
1. ∠1 and ∠2 formed a linear pair ⇒ 1. Given
2. m∠1 + m∠2 = 180° ⇒ 2. Sum of angles on a straight line
3. ∠1 and ∠2 are supplementary angles ⇒ 3. Supplementary angles add up to 180°
4. ∠1 ≅ ∠3 ⇒ 4. Given
5. m∠2 + m∠3 = 180° ⇒ 5. Substitution method
6. ∠3 is a supplement of ∠2 ⇒ 6. Supplement of equal angles
7. ∠2 and ∠3 are supplementary ⇒ 7. Proved
Answer:
1
Step-by-step explanation:
(12-4) - (6/2) - (2 x 2)
(8) - (3) - (4)
1
First you solve the expressions in the perenthesis, then solve the final part
Hope this helps!
:)
This is a geometric sequence with a common ratio of -1/3 and an initial term of -324. Any geometric sequence can be expressed as:
a(n)=ar^(n-1), in this case a=-324 and r=-1/3 so
a(n)=-324(-1/3)^(n-1) so the 5th term will be
a(5)=-324(-1/3)^4
a(5)=-324/81
a(5)= -4
Answer:
Can you please post a picture?!
Step-by-step explanation:
Answer:
√3
Step-by-step explanation:
The given expression to be simplified is

but


Since √12=2√3,this implies that,

Therefore,



The simplified form of ,
is √3