Where is the quadrilateral I need a picture so I can answer
Step-by-step explanation:
It came from nowhere. It makes no sense to add up the balance numbers. To illustrate, let's use a different example:
![\left[\begin{array}{cc}Spend&Balance\\100&400\\100&300\\100&200\\100&100\\100&0\end{array}\right]](https://tex.z-dn.net/?f=%5Cleft%5B%5Cbegin%7Barray%7D%7Bcc%7DSpend%26Balance%5C%5C100%26400%5C%5C100%26300%5C%5C100%26200%5C%5C100%26100%5C%5C100%260%5Cend%7Barray%7D%5Cright%5D)
Adding up the money you spent, and you get $500. Add up the balances, and you get $1000. But why would you add the balances? The 300 in the second line is included in the 400 in the first line. You can't add them together. You'd be counting the 300 twice.
Answer:
260 flat tyres were repaired.
<u>$400 </u>of sales in full tuneups
<u>$2600 </u>of sales in flat tyre repairs
Step-by-step explanation:
$40 x 10 = $400
$3000 - <u>$400</u> = $2600
<u>$2600</u> ÷ $10 = 260 flat tyres
Answer: Lattice parameter, a = (4R)/(√3)
Step-by-step explanation:
The typical arrangement of atoms in a unit cell of BCC is shown in the first attachment.
The second attachment shows how to obtain the value of the diagonal of the base of the unit cell.
If the diagonal of the base of the unit cell = x
(a^2) + (a^2) = (x^2)
x = a(√2)
Then, diagonal across the unit cell (a cube) makes a right angled triangle with one side of the unit cell & the diagonal on the base of the unit cell.
Let the diagonal across the cube be y
Pythagoras theorem,
(a^2) + ((a(√2))^2) = (y^2)
(a^2) + 2(a^2) = (y^2) = 3(a^2)
y = a√3
But the diagonal through the cube = 4R (evident from the image in the first attachment)
y = 4R = a√3
a = (4R)/(√3)
QED!!!
0.8p - 50 < = 150
0.8p < = 150 + 50
0.8p < = 200
p < = 200/0.8
p < = 250
the reason I set it up this way is because when it is 20% off, u r actually paying 80% of the original price (p)....80% of the original price is written as 0.8p...then u subtract ur 50 dollar discount coupon...- 50.....and if all she can spend is 150....it would be less then or equal to 150. So the most she can spend on the phone is 250