A. Use the law of cosines:
29² = 34² + <em>c </em>² - 2•34•<em>c</em> cos(30.3°)
Use a calculator to solve for <em>c</em> ; notice this equation is quadratic, you get two possible solutions, <em>c</em> ≈ 5.973 ≈ 6 or <em>c</em> ≈ 52.738 ≈ 53.
Then use the law of sines to solve for the two possibles measures of angle <em>C</em> :
sin(30.3°)/29 = sin(<em>C </em>)/<em>c</em>
sin(<em>C </em>) = <em>c</em> sin(30.3°)/29
sin(<em>C</em> ) ≈ 0.1039 or sin(<em>C</em> ) ≈ 0.9175
<em>C</em> ≈ 6.0° or <em>C</em> ≈ 66.6°
The interior angles of any triangle sum to 180°, so the remaining angle has measure either
<em>B</em> = 180° - 30.3° - <em>C</em>
<em>B</em> ≈ 143.7° or <em>B</em> ≈ 83.1°
So to recap,
<em>B</em> ≈ 143.7°, <em>C</em> ≈ 6.0°, <em>c</em> ≈ 6
and
<em>B</em> ≈ 83.1°, <em>C</em> ≈ 66.6°, <em>c </em>≈ 53