9514 1404 393
Answer:
-4
Step-by-step explanation:
The average rate of change is given by ...
m = (y2 -y1)/(x2 -x1)
m = (-10 -(-2))/(3 -1) = -8/2 = -4
The average rate of change on the interval [1, 3] is -4.
Answer:a
Step-by-step explanation:hope this helps
<u>Answers:</u>
These are the three major and pure mathematical problems that are unsolved when it comes to large numbers.
The Kissing Number Problem: It is a sphere packing problem that includes spheres. Group spheres are packed in space or region has kissing numbers. The kissing numbers are the number of spheres touched by a sphere.
The Unknotting Problem: It the algorithmic recognition of the unknot that can be achieved from a knot. It defined the algorithm that can be used between the unknot and knot representation of a closely looped rope.
The Large Cardinal Project: it says that infinite sets come in different sizes and they are represented with Hebrew letter aleph. Also, these sets are named based on their sizes. Naming starts from small-0 and further, prefixed aleph before them. eg: aleph-zero.
8 times 3 = 24 +4= 28
4+3=7 times 8 =56
Answer:
The correct option is;
Increasing one fifth unit/sec
Step-by-step explanation:
The equation that gives the curve of the particle of the particle is y = 5·x² - 1
The rate of decrease of the y value dy/dt = 2 units per second
We have;
dy/dx = dy/dt × dt/dx
dy/dx = 10·x
dy/dt = 2 units/sec
dt/dx = (dy/dx)/(dy/dt)
dx/dt = dy/dt/(dy/dx) = 2 unit/sec/(10·x)
When x = 1
dx/dt = 2/(10·x) = 2 unit/sec/(10 × 1) = 1/5 unit/sec
dx/dt = 1/5 unit/sec
Therefore, x is increasing one fifth unit/sec.