Answer:
This question lacks options, options are:
A) ATP
B) NADP
C) Pryuvate
D) glucose
E) acetyl-CoA.
The correct answer is C) Pyruvate.
Explanation:
Pyruvate is a very important compound for the cell since it is a key substrate for energy production and glucose synthesis (neo-glycogenesis), that is, pyruvate is the end product of glucose breakdown in glycolysis. Before entering the mitochondria, it can be converted to lactate, through an anaerobic reaction (in the absence or under oxygen supply) of low performance in energy production, when the main pathway is interfered with. It can also be converted to the amino acid alanine. Within the mitochondria, it can be transformed, by pyruvate dehydrogenase (PDH), into acetyl-coenzyme A (acetyl-CoA), the entry point (substrate) of the Krebs cycle. In addition, by means of pyruvate carboxylase, it can be transformed into oxalacetate, which constitutes the first step in neoglycogenesis.
Admitting that the "a" is a capital A for normal pigmentation and "d" is a capital D for dimpled chin, meaning that these are the dominant traits, the fraction expected to be albino with a non-dimpled chin is of 1/16.
When two heterozygous are crossed and two characteristics are being analysed, the offspring quantity that will possess the two recessive traits can be represented by 1/16. This is easily confirmed when a Punnett square is made. Considering that both parents were heterozygous, on both sides of the crossing in the Punnett square, you would have the following alleles' combination: AD, Ad, aD, and ad. The offspring that would be homozygous recessive (aadd) would correspond to only 1/16.
Answer:
Intraspecific competition
Hope this helps!