Answer:
-1/8
Step-by-step explanation:
lim x approaches -6 (sqrt( 10-x) -4) / (x+6)
Rationalize
(sqrt( 10-x) -4) (sqrt( 10-x) +4)
------------------- * -------------------
(x+6) (sqrt( 10-x) +4)
We know ( a-b) (a+b) = a^2 -b^2
a= ( sqrt(10-x) b = 4
(10-x) -16
-------------------
(x+6) (sqrt( 10-x) +4)
-6-x
-------------------
(x+6) (sqrt( 10-x) +4)
Factor out -1 from the numerator
-1( x+6)
-------------------
(x+6) (sqrt( 10-x) +4)
Cancel x+6 from the numerator and denominator
-1
-------------------
(sqrt( 10-x) +4)
Now take the limit
lim x approaches -6 -1/ (sqrt( 10-x) +4)
-1/ (sqrt( 10- -6) +4)
-1/ (sqrt(16) +4)
-1 /( 4+4)
-1/8
Answer:
C.
Step-by-step explanation:
The formula for a cylinder is V = (pi) (r^2) (h) so 12*12 is 144. 144*pi*17 is 2448 pi units cubed.
Answer: x= -2
Step-by-step explanation:
Here you go!
Answer:
5.0 ft - 5.6 ft
Step-by-step explanation:
Given that the structure is to be made using two 12 foot boards, then we expect the total perimeter to be equal to (2*12)= 24 ft.
Using the angle of elevation, 40° and the width of 8 ft then you can apply the formula for tangent of a triangle where ;
Tan α = opposite side length/adjacent length
Tan 40°= h/8
h= 8 tan 40° = 6.71 ft
Applying the cosine of an angle formula to find the length of the sliding side
Cosine β = adjacent length /hypotenuse
Cosine 40°= 8/ sliding side length
sliding side length = 8/cosine 40° =10.44 ft
Checking the perimeter = 10.44 +8+6.71= 25.15 ft
This is more than the total lengths of the boards, so you need to adjust the height as;
24 - 18.44 = 5.56 ft ,thus the height should be less or equal to 5.56 ft
h≤ 5.6 ft