Answer:
{1, 2, 3}, {3, 4, 5}
Step-by-step explanation:
Write expressions for three consecutive integers: n, n + 1, n + 2.
Set up an equation for the verbal description: the product (mulitplication) of the two larger integers (the last two) is one less than 7 times the smallest (the first one).
(n + 1)(n + 2) = 7n - 1
Multiply (FOIL) the left side.
n^2 + 3n + 2 = 7n - 1
Subtract 7n and subtract 1 to make the right side 0.
n^2 - 4n + 3 = 0
Factor.
(n - 1)(n - 3) = 0
Set the two factors equal to 0
n - 1 = 0, n - 3 = 0
Solve for n.
n = 1, n = 3
One set of integers begins with 1, so it's {1, 2, 3}.
The other set begins with 3, so it's {3, 4, 5}
For a regular tessellation, the shapes can be duplicated infinitely to fill a plane such that there is no gap. The only shapes that can form regular tessellations are equilateral traingle(all sides are equal. This means that it can be turned to any side and it would remain the same), square and regular hexagon. Looking at the given options, we have
Shape Tessellate?
Octagon No
Hexagon Yes
Pentagon No
Square Yes
Triangle No(unless it is specified that it is an equilateral triangle)
Answer: The answer is A and D
Answer: Move terms to the left side−52+3=−9−5x2+3x=−9−52+3−(−9)=0−
Common factor−52+3+9=0−5x2+3x+9=0−(52−3−9)=0
Divide both sides by the same factor−(52−3−9)=0−(5x2−3x−9)=052−3−9=0
Solution=3±321 over 10
Step-by-step explanation:
We know that
sin²x+cos²x=1
so
clear cos x
cos x=(+/-)√[1-sin²x]
in this problem
<span>Angle 0 is in quadrant 1 -----> cos o and sin o are positive
</span>sin o=2/5
cos x=√[1-(2/5)²]----> cos o=√[1-4/25]----> cos o=√[21/25]---> cos o=√21/5
the answer is
cos o=√21/5