Given :
![\:](https://tex.z-dn.net/?f=%20%5C%3A%20)
![\:](https://tex.z-dn.net/?f=%20%5C%3A%20)
![\gray{ \frak{The \: given \: two \: \: points \: are(x_{1 },y_{1})=(−6 , -10)and(x_{ 2 },y_{2} )=( 2,5 )\:}}](https://tex.z-dn.net/?f=%20%5Cgray%7B%20%5Cfrak%7BThe%20%5C%3A%20%20given%20%5C%3A%20%20two%20%5C%3A%20%20%20%5C%3A%20points%20%20%5C%3A%20are%28x_%7B1%20%7D%2Cy_%7B1%7D%29%3D%28%E2%88%926%20%2C%20-10%29and%28x_%7B%202%20%7D%2Cy_%7B2%7D%20%29%3D%28%202%2C5%20%29%5C%3A%7D%7D)
![\:](https://tex.z-dn.net/?f=%20%5C%3A%20)
Let's solve by using midpoint formula :
![\:](https://tex.z-dn.net/?f=%20%5C%3A%20)
![\bf \boxed{\color{red}\frak{Midpoint \: \: Formula : {( \: x ,\:y \: ) = }( \frak{ \frac{x_{1 } + y_{1}}{2} , \frac{x_{2 } + y_{2}}{2} )}}}](https://tex.z-dn.net/?f=%20%20%20%5Cbf%20%5Cboxed%7B%5Ccolor%7Bred%7D%5Cfrak%7BMidpoint%20%5C%3A%20%20%20%5C%3A%20Formula%20%3A%20%20%7B%28%20%5C%3A%20x%20%2C%5C%3Ay%20%5C%3A%20%20%29%20%3D%20%7D%28%20%20%5Cfrak%7B%20%5Cfrac%7Bx_%7B1%20%7D%20%2B%20y_%7B1%7D%7D%7B2%7D%20%2C%20%5Cfrac%7Bx_%7B2%20%7D%20%2B%20y_%7B2%7D%7D%7B2%7D%20%29%7D%7D%7D)
![\:](https://tex.z-dn.net/?f=%20%5C%3A%20)
![\large \gray{ \frak{( \: x ,\:y \: ) = }( \frak{ \frac{ -6 + 2}{2} , \frac{ - 10 + 5}{2} )}}](https://tex.z-dn.net/?f=%20%5Clarge%20%5Cgray%7B%20%5Cfrak%7B%28%20%5C%3A%20x%20%2C%5C%3Ay%20%5C%3A%20%20%29%20%3D%20%7D%28%20%20%5Cfrak%7B%20%5Cfrac%7B%20-6%20%2B%202%7D%7B2%7D%20%2C%20%5Cfrac%7B%20-%2010%20%2B%205%7D%7B2%7D%20%29%7D%7D)
![\:](https://tex.z-dn.net/?f=%20%5C%3A%20)
![\: \large \gray{ \frak{( \: x ,\:y \: ) = }( \frak{ \frac{ -4}{2} , \frac{ - 5}{2} )}}](https://tex.z-dn.net/?f=%20%5C%3A%20%5Clarge%20%5Cgray%7B%20%5Cfrak%7B%28%20%5C%3A%20x%20%2C%5C%3Ay%20%5C%3A%20%20%29%20%3D%20%7D%28%20%20%5Cfrak%7B%20%5Cfrac%7B%20-4%7D%7B2%7D%20%2C%20%5Cfrac%7B%20-%205%7D%7B2%7D%20%29%7D%7D)
![\:](https://tex.z-dn.net/?f=%20%5C%3A%20)
![\large \gray{ \frak{( \: x ,\:y \: ) = }( \frak{ \cancel\frac{ -4}{2} , \cancel\frac{ - 5}{2} )}}](https://tex.z-dn.net/?f=%5Clarge%20%5Cgray%7B%20%5Cfrak%7B%28%20%5C%3A%20x%20%2C%5C%3Ay%20%5C%3A%20%20%29%20%3D%20%7D%28%20%20%5Cfrak%7B%20%20%5Ccancel%5Cfrac%7B%20-4%7D%7B2%7D%20%2C%20%20%5Ccancel%5Cfrac%7B%20-%205%7D%7B2%7D%20%29%7D%7D)
![\: \:](https://tex.z-dn.net/?f=%20%5C%3A%20%20%5C%3A%20)
![\underline{ \boxed{ \large \red{ \frak{option \: d }( \frak{ - 2, - 2.5)}}}}✓](https://tex.z-dn.net/?f=%20%5Cunderline%7B%20%5Cboxed%7B%20%5Clarge%20%5Cred%7B%20%5Cfrak%7Boption%20%5C%3A%20d%20%7D%28%20%20%5Cfrak%7B%20%20%20-%202%2C%20-%202.5%29%7D%7D%7D%7D%E2%9C%93)
Hope Helps! :)
Answer:
Jeff Bezos
Step-by-step explanation:
He is the amazon founder and CEO, He has a net worth of 193.4 billion and ranks the first richest person on earth today
No solution
Because 3 unknown needs 3 equation at least
Answer:
X probability = 0.02
Cumulative frequency at x ( 6 ) = 1
Step-by-step explanation:
X P ( X ) Cf ( X )
1 0.58 0.58
2 0.18 0.58 + 0.18 = 0.76
3 0.10 0.76 + 0.10 = 0.86
4 0.07 0.86 + 0.07 = 0.93
5 0.05 0.93 + 0.05 = 0.98
6 0.02 0.98 + 0.02 = 1
Answer:
<h3>The solution is 480 bricks.</h3>
Step-by-step explanation:
We are given that number of rows of bricks in a wall = 15 rows.
Number of bricks in a row = 32 bricks.
In order to find the total number of bricks, we need to multiply number of rows with number of bricks in a row.
Total number of bricks in 15 rows = 15 × 32 = 480 bricks.
Therefore, will Chin-li will need 480 bricks.
<h3>The solution is 480 bricks.</h3>