Answer:
P43=4!(4–3)!=241=24
Step-by-step explanation:
There are four choices you can make for the lead reindeer. For each possible choice, there are then three remaining you can choose to fly second, making 4×3=12 choices for the lead pair. For each possible choice there are two remaining reindeer to take up the back position, making 12×2=24 choices for the team of three.
This type of problem is called a permutation problem, and we write Pnr for the number of ways of choosing r items from n possibilities when the order of the items matters. In this case we are choosing 3 reindeer from 4 possibilities, and the order they appear in the flying line does matter, so the answer we want is P43. The general formula is Pnr=n!(n−r)!. For the answer we are looking for we therefore have:
P43=4!(4–3)!=241=24
Answer:
b) 7×8
c) 4×14
d) 2×28
Step-by-step explanation:
A factor pair of a number is a pair of numbers that, when multiplied will result in the given number.
The factors of 56 are: 1, 2, 4, 7, 8, 14, 28, and 56.
The factor pairs are:
Out of the options, only Option A is not a factor pair.
Solution:
Given that the point P lies 1/3 along the segment RS as shown below:
To find the y coordinate of the point P, since the point P lies on 1/3 along the segment RS, we have

Using the section formula expressed as
![[\frac{mx_2+nx_1}{m+n},\frac{my_2+ny_1}{m+n}]](https://tex.z-dn.net/?f=%5B%5Cfrac%7Bmx_2%2Bnx_1%7D%7Bm%2Bn%7D%2C%5Cfrac%7Bmy_2%2Bny_1%7D%7Bm%2Bn%7D%5D)
In this case,

where

Thus, by substitution, we have
![\begin{gathered} [\frac{1(2)+2(-7)}{1+2},\frac{1(4)+2(-2)}{1+2}] \\ \Rightarrow[\frac{2-14}{3},\frac{4-4}{3}] \\ =[-4,\text{ 0\rbrack} \end{gathered}](https://tex.z-dn.net/?f=%5Cbegin%7Bgathered%7D%20%5B%5Cfrac%7B1%282%29%2B2%28-7%29%7D%7B1%2B2%7D%2C%5Cfrac%7B1%284%29%2B2%28-2%29%7D%7B1%2B2%7D%5D%20%5C%5C%20%5CRightarrow%5B%5Cfrac%7B2-14%7D%7B3%7D%2C%5Cfrac%7B4-4%7D%7B3%7D%5D%20%5C%5C%20%3D%5B-4%2C%5Ctext%7B%200%5Crbrack%7D%20%5Cend%7Bgathered%7D)
Hence, the y-coordinate of the point P is
A line parallel to your equation has the same slope, so it should be in the form:
y = (-3/2)x + b
To figure what "b" has to be, plug in the point (4,0) and solve:
0 = (-3/2)*4 + b
0 = -6 + b
6 = b
So the equation of the line is:
y = (-3/2)x + 6