Answer: The force of attraction present between the solids depends on the type of solid.
Explanation:
For e.g. if solid is ionic solid, then the ionic forces hold on the solid molecules. And these forces hold together and form solid. When it comes to hydrogen bonding stronger the hydrogen bonding, more together the molecules and it become solid.
Answer:
(1) <em>C</em> C3H7OH = 9.200 M
(2) <em>C</em> C3H7OH = 11.647 m
Explanation:
mixture:
∴ 70% = (g C3H7OH/g mix)×100
∴ 30% = (gH2O/g mix)×100
∴ δ mix = 0.79 g/mL
assuming:
⇒ V mix = (100g)×(mL/0.79g) = 126.582 mL mix = 0.1266 L mix
⇒ g C3H7OH = 70g
⇒ g H2O = 30g
∴ Mw C3H7OH = 60.1 g/mol
∴ Mw H2O = 18 g/mol
(1) Molar concentration (M):
⇒ <em>C</em> C3H7OH = ((70 g)(mol/60.1 g))/(0.1266L) = 9.200 M
(2) molal concentration (m):
⇒ <em>C </em>C3H7OH = ((70 g)(mol/60.1g))/(0.100 Kg) = 11.647 m
<u>Answer:</u> The molarity of phosphoric acid is 0.05 M
<u>Explanation:</u>
A neutralization reaction is defined as the reaction in which an acid reacts with a base to form a salt and water molecule.
At equivalence, moles of acid becomes equal to the moles of base. The equation for the neutralization follows:
........(1)
where,
are the n-factor, molarity and volume of acid that is 
are the n-factor, molarity and volume of the base that is NaOH
Given values:

Plugging values in equation 1:

Hence, the molarity of phosphoric acid is 0.05 M
When you add salt to water, you lower to freezing point of the substance.
So for example, normal water freezes at 0°C. But water with salt in it won't freeze at 0°C, because its freezing point is lowered.
In answer to the question. It takes longer for water with salt in it to freeze because the substance requires a lower temperature than normal water to freeze.
When it comes to physical changes like phase changes, there are two types of heat energy: sensible heat and latent heat. Sensible heat is the heat absorbed/released when you heat the substance but it doesn't change phase. An example would be heating lukewarm water. The substance is liquid all throughout. Latent heat, on the other hand, is the heat absorbed/released when there is a phase change. An example would be boiling water, because it changes liquid to vapor.
Hence, for freezing liquid, you use the latent heat, specifically the heat of fusion. The answer should be
2.5 g * (1 mol/18.02 g) * 6.03 kJ/mol = 0.84 kJ/mol
The answer is not in the choices. You only use Hvap if you boil water.