Domain means the values of independent variable(input) which will give defined output to the function.
Given:
The height h of a projectile is a function of the time t it is in the air. The height in feet for t seconds is given by the function

Solution:
To get defined output, the height h(t) need to be greater than or equal to zero. We need to set up an inequality and solve it to find the domain values.
![To \; find \; domain:\\\\h(t) \geq0\\\\-16t^2+96t \geq 0\\Factoring \; -16t \; in \; the \; left \; side \; of \; the \; inequality\\\\-16t(t-6) \geq 0\\Step \; 1: Find \; Boundary \; Points \; by \; setting \; up \; above \; inequality \; to \; zero.\\\\t(t-6)=0\\Use \; zero \; factor \; property \; to \; solve\\\\t=0 \; (or) \; t = 6\\\\Step \; 2: \; List \; the \; possible \; solution \; interval \; using \; boundary \; points\\(- \infty,0], \; [0, 6], \& [6, \infty)](https://tex.z-dn.net/?f=%20To%20%5C%3B%20find%20%5C%3B%20domain%3A%5C%5C%5C%5Ch%28t%29%20%5Cgeq0%5C%5C%5C%5C-16t%5E2%2B96t%20%5Cgeq%20%200%5C%5CFactoring%20%5C%3B%20-16t%20%5C%3B%20in%20%5C%3B%20the%20%5C%3B%20left%20%5C%3B%20side%20%5C%3B%20of%20%5C%3B%20the%20%5C%3B%20inequality%5C%5C%5C%5C-16t%28t-6%29%20%5Cgeq%20%200%5C%5CStep%20%5C%3B%201%3A%20Find%20%5C%3B%20Boundary%20%5C%3B%20Points%20%5C%3B%20by%20%5C%3B%20setting%20%5C%3B%20up%20%5C%3B%20above%20%5C%3B%20inequality%20%5C%3B%20to%20%5C%3B%20zero.%5C%5C%5C%5Ct%28t-6%29%3D0%5C%5CUse%20%5C%3B%20zero%20%5C%3B%20factor%20%5C%3B%20property%20%5C%3B%20to%20%5C%3B%20solve%5C%5C%5C%5Ct%3D0%20%5C%3B%20%28or%29%20%5C%3B%20t%20%3D%206%5C%5C%5C%5CStep%20%5C%3B%202%3A%20%5C%3B%20List%20%5C%3B%20the%20%5C%3B%20possible%20%20%5C%3B%20solution%20%5C%3B%20interval%20%5C%3B%20using%20%5C%3B%20boundary%20%5C%3B%20points%5C%5C%28-%20%5Cinfty%2C0%5D%2C%20%5C%3B%20%5B0%2C%206%5D%2C%20%5C%26%20%5B6%2C%20%5Cinfty%29%20)
![Step \; 3:Pick \; test \; point \; from \; each \; interval \; to \; check \; whether \\\; makes \; the \; inequality \; TRUE \; or \; FALSE\\\\When \; t = -1\\-16(-1)(-1-6) \geq 0\\-112 \geq 0 \; FALSE\\(-\infty, 0] \; is \; not \; solution\\Also \; Logically \; time \; t \; cannot \; be \; negative\\\\When \; t = 1\\-16(1)(1-6) \geq 0\\80 \geq 0 \; TRUE\\ \; [0, 6] \; is \; a \; solution\\\\When \; t = 7\\-16(7)(7-6) \geq 0\\-112 \geq 0 \; FALSE\\ \; [6, -\infty) \; is \; not \; solution](https://tex.z-dn.net/?f=%20Step%20%5C%3B%203%3APick%20%5C%3B%20test%20%5C%3B%20point%20%5C%3B%20from%20%5C%3B%20each%20%5C%3B%20interval%20%5C%3B%20to%20%5C%3B%20check%20%5C%3B%20whether%20%5C%5C%5C%3B%20makes%20%5C%3B%20the%20%5C%3B%20inequality%20%5C%3B%20TRUE%20%5C%3B%20or%20%5C%3B%20FALSE%5C%5C%5C%5CWhen%20%5C%3B%20t%20%3D%20-1%5C%5C-16%28-1%29%28-1-6%29%20%5Cgeq%20%200%5C%5C-112%20%5Cgeq%20%200%20%5C%3B%20FALSE%5C%5C%28-%5Cinfty%2C%200%5D%20%5C%3B%20is%20%5C%3B%20not%20%5C%3B%20solution%5C%5CAlso%20%5C%3B%20Logically%20%5C%3B%20time%20%5C%3B%20t%20%5C%3B%20cannot%20%5C%3B%20be%20%5C%3B%20negative%5C%5C%5C%5CWhen%20%5C%3B%20t%20%3D%201%5C%5C-16%281%29%281-6%29%20%5Cgeq%20%200%5C%5C80%20%5Cgeq%20%200%20%5C%3B%20TRUE%5C%5C%20%5C%3B%20%5B0%2C%206%5D%20%5C%3B%20is%20%5C%3B%20a%20%5C%3B%20solution%5C%5C%5C%5CWhen%20%5C%3B%20t%20%3D%207%5C%5C-16%287%29%287-6%29%20%5Cgeq%20%200%5C%5C-112%20%5Cgeq%20%200%20%5C%3B%20FALSE%5C%5C%20%5C%3B%20%5B6%2C%20-%5Cinfty%29%20%5C%3B%20is%20%5C%3B%20not%20%5C%3B%20solution%20)
Conclusion:
The domain of the function is the time in between 0 to 6 seconds

The height will be positive in the above interval.
because its isosceles so 9+9=x²
and x equal
2√3
Answer:
3-i
Step-by-step explanation:
1-5i + 2 +4i
We add the real parts
1+2 =3
We add the imaginary parts
-5i + 4i = -1i
The complex number is
3-i
Answer:
The bulbs should be replaced each 1436.9 hours.
Step-by-step explanation:
Problems of normally distributed samples are solved using the z-score formula.
In a set with mean
and standard deviation
, the zscore of a measure X is given by:

The Z-score measures how many standard deviations the measure is from the mean. After finding the Z-score, we look at the z-score table and find the p-value associated with this z-score. This p-value is the probability that the value of the measure is smaller than X, that is, the percentile of X. Subtracting 1 by the pvalue, we get the probability that the value of the measure is greater than X.
In this problem, we have that:

How often should the bulbs be replaced so that no more than 1% burn out between replacement periods?
This is the first percentile of hours. So it is X when Z has a pvalue of 0.01.
So it is X when Z = -2.33.




The bulbs should be replaced each 1436.9 hours.
It is the first answer choice