1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
IrinaK [193]
3 years ago
12

Use the algebra tiles to model x – 2.

Mathematics
1 answer:
choli [55]3 years ago
3 0

Sorry for being late but the answer is B

You might be interested in
Would the answer be 10% or 15% <br><br> Confused
Shtirlitz [24]
I’m pretty sure it would be 15% of not I’m so sorry
6 0
3 years ago
8.8 - 3.4 with using mental method<br> step by step explanation
Scrat [10]

8.8-3.4=5.4

Just subtract 8-3 and 8-4 and you'll get 5.4

Hope it helps!

*************************************************

Brainliest please if you found my answer helpful! :)

4 0
3 years ago
How to find the area?????????????
Illusion [34]
Area of a triangle = 1/2 b•h

A = 1/2 b • h
A = 1/2 (10 cm • 9 cm)
A = 1/2 (90 cm^2)
A = 45 cm^2.
8 0
2 years ago
Read 2 more answers
6-1/3 divided by 1/4 equals?
bagirrra123 [75]
The answer will be -8
hope this help!!!!!!!!!
6 0
3 years ago
For the function y=3x2: (a) Find the average rate of change of y with respect to x over the interval [3,6]. (b) Find the instant
nirvana33 [79]

Answer:

The instantaneous rate of change of y with respect to x at the value x = 3 is 18.

Step-by-step explanation:

a) Geometrically speaking, the average rate of change of y with respect to x over the interval by definition of secant line:

r = \frac{y(b) -y(a)}{b-a} (1)

Where:

a, b - Lower and upper bounds of the interval.

y(a), y(b) - Function exaluated at lower and upper bounds of the interval.

If we know that y = 3\cdot x^{2}, a = 3 and b = 6, then the average rate of change of y with respect to x over the interval is:

r = \frac{3\cdot (6)^{2}-3\cdot (3)^{2}}{6-3}

r = 27

The average rate of change of y with respect to x over the interval [3,6] is 27.

b) The instantaneous rate of change can be determined by the following definition:

y' =  \lim_{h \to 0}\frac{y(x+h)-y(x)}{h} (2)

Where:

h - Change rate.

y(x), y(x+h) - Function evaluated at x and x+h.

If we know that x = 3 and y = 3\cdot x^{2}, then the instantaneous rate of change of y with respect to x is:

y' =  \lim_{h \to 0} \frac{3\cdot (x+h)^{2}-3\cdot x^{2}}{h}

y' =  3\cdot \lim_{h \to 0} \frac{(x+h)^{2}-x^{2}}{h}

y' = 3\cdot  \lim_{h \to 0} \frac{2\cdot h\cdot x +h^{2}}{h}

y' = 6\cdot  \lim_{h \to 0} x +3\cdot  \lim_{h \to 0} h

y' = 6\cdot x

y' = 6\cdot (3)

y' = 18

The instantaneous rate of change of y with respect to x at the value x = 3 is 18.

5 0
2 years ago
Other questions:
  • The length of one base of a trapezoid is 19 less than five times the length of the other base. If the trapezoid has a height of
    6·1 answer
  • Choose the correct simplification of (5x3 − 5x − 8) + (2x3 + 4x + 2).
    13·2 answers
  • A soccer league has 190 players. of those players 50% are boys. how many boys are in the soccer league?
    10·2 answers
  • Tell me what should I do​
    5·1 answer
  • One number is 7 less than a second number. Twice the second number is 7 less than 5 times the first. Find the smaller of two num
    8·1 answer
  • Use the distributive property to write the following expression in expanded form. 2(b+c)
    10·2 answers
  • B is the midpoint of segment AC trying to find AB using the definition of midpoint.
    11·1 answer
  • 20 points if you can solve all
    14·1 answer
  • Can someone help please? ​
    6·1 answer
  • Pls helpppppppppppppp
    7·2 answers
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!