Supplementary angles , when added, = 180
complimentary angles, when added, = 90
< AQC + < GQC = 180.....supplementary
< BQD + < DQE = 90.......complimentary
< CQE + < EQF = 90.......complimentary
< GQF , < FQE.....neither
< BQC + < DQC = 90....complimentary
< W and < X are supplementary...
if < W = 37, then < X = (180 - 37) = 143
< S and < T are complimentary
if < S = 64, then < T = (90 - 64) = 26
< C and < D are supplementary
if < C = 83, the < D = (180 - 83) = 97
cant read all of the last one.....but if they are complimentary, and
< U = 41, then the other angle is : (90 - 41) = 49
Answer:
c=2 d=1
Step-by-step explanation:
Answer:
Similar - Yes
Similarity Statement - cdef ~ qrst
Scale factor - 3/4
Step-by-step explanation:
Hope this helps :)
Answer: 3
x
−
2
y
−
15
=
0
Explanation:
We know that,
the slope of the line
a
x
+
b
y
+
c
=
0
is
m
=
−
a
b
∴
The slope of the line
2
x
+
3
y
=
9
is
m
1
=
−
2
3
∴
The slope of the line perpendicular to
2
x
+
3
y
=
9
is
m
2
=
−
1
m
1
=
−
1
−
2
3
=
3
2
.
Hence,the equn.of line passing through
(
3
,
−
3
)
and
m
2
=
3
2
is
y
−
(
−
3
)
=
3
2
(
x
−
3
)
y
+
3
=
3
2
(
x
−
3
)
⇒
2
y
+
6
=
3
x
−
9
⇒
3
x
−
2
y
−
15
=
0
Note:
The equn.of line passing through
A
(
x
1
,
y
1
)
and
with slope
m
is
y
−
y
1
=
m
(
x
−
x
1
)3
x
−
2
y
−
15
=
0
Explanation:
We know that,
the slope of the line
a
x
+
b
y
+
c
=
0
is
m
=
−
a
b
∴
The slope of the line
2
x
+
3
y
=
9
is
m
1
=
−
2
3
∴
The slope of the line perpendicular to
2
x
+
3
y
=
9
is
m
2
=
−
1
m
1
=
−
1
−
2
3
=
3
2
.
Hence,the equn.of line passing through
(
3
,
−
3
)
and
m
2
=
3
2
is
y
−
(
−
3
)
=
3
2
(
x
−
3
)
y
+
3
=
3
2
(
x
−
3
)
⇒
2
y
+
6
=
3
x
−
9
⇒
3
x
−
2
y
−
15
=
0
Note:
The equn.of line passing through
A
(
x
1
,
y
1
)
and
with slope
m
is
y
−
y
1
=
m
(
x
−
Explanation:
the equation of a line in
slope-intercept form
is.
∙
x
y
=
m
x
+
b
where m is the slope and b the y-intercept
rearrange
2
x
+
3
y
=
9
into this form
⇒
3
y
=
−
2
x
+
9
⇒
y
=
−
2
3
x
+
3
←
in slope-intercept form
with slope m
=
−
2
3
Given a line with slope then the slope of a line
perpendicular to it is
∙
x
m
perpendicular
=
−
1
m
⇒
m
perpendicular
=
−
1
−
2
3
=
3
2
⇒
y
=
3
2
x
+
b
←
is the partial equation
to find b substitute
(
3
,
−
3
)
into the partial equation
−
3
=
9
2
+
b
⇒
b
=
−
6
2
−
9
2
=
−
15
2
⇒
y
=
3
2
x
−
15
2
←
equation of perpendicular lineExplanation:
the equation of a line in
slope-intercept form
is.
∙
x
y
=
m
x
+
b
where m is the slope and b the y-intercept
rearrange
2
x
+
3
y
=
9
into this form
⇒
3
y
=
−
2
x
+
9
⇒
y
=
−
2
3
x
+
3
←
in slope-intercept form
with slope m
=
−
2
3
Given a line with slope then the slope of a line
perpendicular to it is
∙
x
m
perpendicular
=
−
1
m
⇒
m
perpendicular
=
−
1
−
2
3
=
3
2
⇒
y
=
3
2
x
+
b
←
is the partial equation
to find b substitute
(
3
,
−
3
)
into the partial equation
−
3
=
9
2
+
b
⇒
b
=
−
6
2
−
9
2
=
−
15
2
⇒
y
=
3
2
x
−
15
2
←
equation of perpendicular line
We need to use the formula for simple interest which is
I= prt
Where I is the amount of money you earned or pay in interest
p is the principal, the amount you deposited or borrowed
r is the interest rate expressed as a decimal
t is time in terms of years
In this problem, I= 1,680
p= 3000
t= 8
'. r is what we are looking for.
Substituting the numbers into the simple interest formula, we get
I=. p r t
1,680=(3000)(r)(8). Multiplying
1,680= 24,000r Divide both sides by 24,000
0.07= r
So, the percentage is (0.07)(100)= 7%...