Answer:
61.7295 (61.7) miles
If I'm reading this correctly, this is just a simple addition equation. You'd add up 23.4865 and 38.243 to get 61.7295 miles, or 61.7 miles.
Hope I helped! ☺
The center of mass is mathematically given as
![\bar{x}=\left(\frac{44 e-100}{25 e-40}\right)\end{aligned}](https://tex.z-dn.net/?f=%5Cbar%7Bx%7D%3D%5Cleft%28%5Cfrac%7B44%20e-100%7D%7B25%20e-40%7D%5Cright%29%5Cend%7Baligned%7D)
<h3>What is the center of mass.?</h3>
Determine the center of mass in one dimension:
Represent the masses at the respective distances.
![\begin{|c|c|} Masses \ & \ \ \ \ \ \ \ \ \ \ \ \ \ \ Located at \\\rho=x^{3}+x \cdot e^{-x} & \ \ \ \ x \in(0,1)$ \\\end](https://tex.z-dn.net/?f=%5Cbegin%7B%7Cc%7Cc%7C%7D%20Masses%20%5C%20%26%20%5C%20%5C%20%5C%20%5C%20%5C%20%5C%20%5C%20%5C%20%5C%20%5C%20%5C%20%5C%20%5C%20%5C%20Located%20at%20%5C%5C%5Crho%3Dx%5E%7B3%7D%2Bx%20%5Ccdot%20e%5E%7B-x%7D%20%26%20%5C%20%5C%20%20%5C%20%5C%20%20x%20%5Cin%280%2C1%29%24%20%5C%5C%5Cend)
We calculate the total mass of the system.
![\begin{aligned}m &=\int_{0}^{1} \rho \cdot d x \\& m =\int_{0}^{1}\left(x^{3}+x \cdot e^{-x}\right) \cdot d x \\&m =\left|\frac{x^{4}}{4}-(x+1) e^{-x}\right|_{0}^{1} \\&m =\left(\frac{5}{4}-\frac{2}{e}\right)\end{aligned}](https://tex.z-dn.net/?f=%5Cbegin%7Baligned%7Dm%20%26%3D%5Cint_%7B0%7D%5E%7B1%7D%20%5Crho%20%5Ccdot%20d%20x%20%5C%5C%26%20m%20%3D%5Cint_%7B0%7D%5E%7B1%7D%5Cleft%28x%5E%7B3%7D%2Bx%20%5Ccdot%20e%5E%7B-x%7D%5Cright%29%20%5Ccdot%20d%20x%20%5C%5C%26m%20%3D%5Cleft%7C%5Cfrac%7Bx%5E%7B4%7D%7D%7B4%7D-%28x%2B1%29%20e%5E%7B-x%7D%5Cright%7C_%7B0%7D%5E%7B1%7D%20%5C%5C%26m%20%3D%5Cleft%28%5Cfrac%7B5%7D%7B4%7D-%5Cfrac%7B2%7D%7Be%7D%5Cright%29%5Cend%7Baligned%7D)
Step 03: Calculate the moment of the system.
![\begin{aligned}M &=\int_{0}^{1}(\rho \cdot x) \cdot d x \\& M=\int_{0}^{1}\left(x^{4}+x^{2} \cdot e^{-x}\right) \cdot d x \\&M =\left|\frac{x^{5}}{5}-\left(x^{2}-2 x+2\right) \cdot e^{-x}\right|_{0}^{1} \\&M=\left(\frac{11}{5}-\frac{5}{e}\right)\end{aligned}](https://tex.z-dn.net/?f=%5Cbegin%7Baligned%7DM%20%26%3D%5Cint_%7B0%7D%5E%7B1%7D%28%5Crho%20%5Ccdot%20x%29%20%5Ccdot%20d%20x%20%5C%5C%26%20M%3D%5Cint_%7B0%7D%5E%7B1%7D%5Cleft%28x%5E%7B4%7D%2Bx%5E%7B2%7D%20%5Ccdot%20e%5E%7B-x%7D%5Cright%29%20%5Ccdot%20d%20x%20%5C%5C%26M%20%3D%5Cleft%7C%5Cfrac%7Bx%5E%7B5%7D%7D%7B5%7D-%5Cleft%28x%5E%7B2%7D-2%20x%2B2%5Cright%29%20%5Ccdot%20e%5E%7B-x%7D%5Cright%7C_%7B0%7D%5E%7B1%7D%20%5C%5C%26M%3D%5Cleft%28%5Cfrac%7B11%7D%7B5%7D-%5Cfrac%7B5%7D%7Be%7D%5Cright%29%5Cend%7Baligned%7D)
we calculate the center of mass.
![\begin{aligned}\bar{x} &=\left(\frac{M}{m}\right) \\& \bar{x}=\left\{\left(\frac{\left.11-\frac{5}{5}\right)}{\left(\frac{5}{4}-\frac{2}{e}\right)}\right\}\right.\\& \bar{x}=\left(\frac{11 e-25}{5 e}\right) \cdot\left(\frac{4 e}{5 e-8}\right) \\&\bar{x}=\left(\frac{44 e-100}{25 e-40}\right)\end{aligned}](https://tex.z-dn.net/?f=%5Cbegin%7Baligned%7D%5Cbar%7Bx%7D%20%26%3D%5Cleft%28%5Cfrac%7BM%7D%7Bm%7D%5Cright%29%20%5C%5C%26%20%5Cbar%7Bx%7D%3D%5Cleft%5C%7B%5Cleft%28%5Cfrac%7B%5Cleft.11-%5Cfrac%7B5%7D%7B5%7D%5Cright%29%7D%7B%5Cleft%28%5Cfrac%7B5%7D%7B4%7D-%5Cfrac%7B2%7D%7Be%7D%5Cright%29%7D%5Cright%5C%7D%5Cright.%5C%5C%26%20%5Cbar%7Bx%7D%3D%5Cleft%28%5Cfrac%7B11%20e-25%7D%7B5%20e%7D%5Cright%29%20%5Ccdot%5Cleft%28%5Cfrac%7B4%20e%7D%7B5%20e-8%7D%5Cright%29%20%5C%5C%26%5Cbar%7Bx%7D%3D%5Cleft%28%5Cfrac%7B44%20e-100%7D%7B25%20e-40%7D%5Cright%29%5Cend%7Baligned%7D)
Read more about the center of mass.
brainly.com/question/27549055
#SPJ1
Answer:
4/5
Step-by-step explanation:
Multiply 80 by 14 to get how many total people they can feed.
80 times 14 is 1120.
Now, divide 1120 by 32 to get how many days the food will last if 32 people come every day.
1120/32 = 35.
The answer is B, 35 days