Multiplying complex numbers is a lot like multiplying binomial terms. The only relation one has to remember when dealing with complex numbers is that i² = -1.
Now let us try to multiply binomials. This is done by adding the products of the first term of the first binomial distributed to the second binomial, and the second term of the first binomial distributed to the second binomial. This is done below:
(<span>3 – 5i)(–2 + 4i) = -6 + 12i + 10i -20i²
</span>
Simplifying and applying i²<span> = -1:</span>
-6 + 22i - 20(-1)
-6 + 22i + 20
14 + 22i
Among the choices, the correct answer is B.
<h3>
Answer: 12.5 (choice C)</h3>
=================================================
We apply the pythagorean theorem to find this answer.
a = 11 and b = 6 are the given legs
c = unknown hypotenuse
So,
a^2+b^2 = c^2
c = sqrt( a^2+b^2 )
c = sqrt( 11^2 + 6^2 )
c = sqrt( 121 + 36 )
c = sqrt( 157 )
c = 12.52996 approximately
c = 12.5
Side note: once you replace 'a' and b with 11 and 6, you can compute everything with a calculator in one single step more or less. The steps above are shown if you wanted to find the exact value sqrt(157).
Answer:
the second one
Step-by-step explanation:
When subtracting a negative, the negative turns to a positive, so in this case, -14- -8 would be the same as -14 + 8
Answer: p/6
p divided by 6 is p/6
The expression p/6 can't be simplified anymore unless you know the value of p