Temperature is a measure of the average kinetic energy of the particles in the sample. This is the statement that defines the temperature of a sample of matter.
The temperature of a system is defined simply as the average energy of microscopic motions of a single particle in the system per degree of freedom.
The microscopic motions in a solid matter is the principal vibrations of the constituent atoms about their sites. In an ideal monoatomic gas, the microscopic motions are the translational motions of the constituent gas particles. In multiatomic gases, aside from translational motions, vibrational and rotational motions are included in the microscopic motions.
Answer: Na, S, Cl
Explanation:
Atomic size decreases as one moves from left to right on the periodic table with elements in the same period. This is as a result of the electrons increasing in the outer circle and thus being drawn to the protons in the nucleus which will lead to the outer shell area decreasing.
Sodium (Na) comes before Sulfur (S) which comes before Chlorine (S) so this is the decreasing order as they are all in the same period.
True. Aquaculture is basically the rearing of aquatic animals for food
Answer:
5.37 L
Explanation:
To solve this problem we need to use the PV=nRT equation.
First we <u>calculate the amount of CO₂</u>, using the initial given conditions for P, V and T:
- P = 785 mmHg ⇒ 785/760 = 1.03 atm
- T = 18 °C ⇒ 18 + 273.16 = 291.16 K
1.03 atm * 4.80 L = n * 0.082 atm·L·mol⁻¹·K⁻¹ * 291.16 K
We <u>solve for n</u>:
Then we use that value of n for another PV=nRT equation, where T=37 °C (310.16K) and P = 745 mmHg (0.98 atm).
- 0.98 atm * V = 0.207 mol * 0.082 atm·L·mol⁻¹·K⁻¹ * 310.16 K
And we <u>solve for V</u>:
Moles = weight in grams / molecular weight.
So I would divide the "grams of barium" by its molecular weight (which is 137.3) to get "moles of barium". :)