Answer:
BUDDY YOU OUT OF LUCK
Step-by-step explanation:
Answer: 0.02
Step-by-step explanation:
OpenStudy (judygreeneyes):
Hi - If you are working on this kind of problem, you probably know the formula for the probability of a union of two events. Let's call working part time Event A, and let's call working 5 days a week Event B. Let's look at the information we are given. We are told that 14 people work part time, so that is P(A) = 14/100 - 0.14 . We are told that 80 employees work 5 days a week, so P(B) = 80/100 = .80 . We are given the union (there are 92 employees who work either one or the other), which is the union, P(A U B) = 92/100 = .92 .. The question is asking for the probability of someone working both part time and fll time, which is the intersection of events A and B, or P(A and B). If you recall the formula for the probability of the union, it is
P(A U B) = P(A) +P(B) - P(A and B).
The problem has given us each of these pieces except the intersection, so we can solve for it,
If you plug in P(A U B) = 0.92 and P(A) = 0.14, and P(B) = 0.80, you can solve for P(A and B), which will give you the answer.
I hope this helps you.
Credit: https://questioncove.com/updates/5734d282e4b06d54e1496ac8
Answer:
C. AB/BC=FE/ED
Step-by-step explanation:
Answer:
Let X be the number.
Twice the number would be 2x
The difference between the two, would be subtraction, so you would subtract 4 from 2x
The equation becomes 2x-4 = 16
Now solve for x:
2x-4 = 16
Add 4 to each side:
2x = 20
Divide both sides by 2:
x = 20/2
x = 10
The number is 10.
Answer:
23%
Step-by-step explanation:
There are 4 male and 3 female freshmen. Thus the total number of freshmen is 7.
On the other hand, we have 14 male students and 16 female students. Thus the total number of students is 30.
If a student is selected at random, the probability that the student is a freshman is;
( 7/30) * 100 = 23.33%