Answer:
9 am it will be IV quadrant
11 it will be I quadrant
hope it helps u
The question is incomplete. Here is the complete question.
As a part of city building refurbishment project, architects have constructed a scale model of several city builidings to present to the city commission for approval. The scale of the model is 1 inch = 9 feet.
The model includes a new park in the center of the city. If the dimensions of the park in the model are 9 inches by 17 inches, what are the actual dimensions of the park?
Answer: 81 feet by 153 feet
Step-by-step explanation: <u>Unit</u> <u>Scale</u> is a ratio comparing actual dimensions of an object to the dimensions of model representing the actual object.
In the refurbishment project, the unit scale is given by
1 inch = 9 feet
So, the dimensions of the new park in actual dimensions would be
1 inch = 9 feet
9 inches = x
x = 9.9
x = 81 feet
1 inch = 9 feet
17 inches = y
y = 17.9
y = 153 feet
The actual dimensions of the new park are 81 feet by 153 feet.
Slope formula is y2-y1/x2-x1.
Using this, we can say that -3 – 2/5 – 0=
1.
Answer:
Step-by-step explanation:
Given the explicit function as
f(n) = 15n+4
The first term of the sequence is at when n= 1
f(1) = 15(1)+4
f(1) = 19
a = 19
Common difference d = f(2)-f(1)
f(2) = 15(2)+4
f(2) = 34
d = 34-19
d = 15
Sum of nth term of an AP = n/2{2a+(n-1)d}
S20 = 20/2{2(19)+(20-1)15)
S20 = 10(38+19(15))
S20 = 10(38+285)
S20 = 10(323)
S20 = 3230.
Sum of the 20th term is 3230
For the explicit function
f(n) = 4n+15
f(1) = 4(1)+15
f(1) = 19
a = 19
Common difference d = f(2)-f(1)
f(2) = 4(2)+15
f(2) = 23
d = 23-19
d = 4
Sum of nth term of an AP = n/2{2a+(n-1)d}
S20 = 20/2{2(19)+(20-1)4)
S20 = 10(38+19(4))
S20 = 10(38+76)
S20 = 10(114)
S20 = 1140
Sum of the 20th terms is 1140