1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Aloiza [94]
3 years ago
7

PLEASE HELP !! 10 POINTS AND BRAINLIEST !!!:)

Mathematics
1 answer:
enot [183]3 years ago
7 0
Infinite lines of symmetry because you can make any cut on the circle and it would en symmetric with the captain America shield
You might be interested in
If -y-2x^3=Y^2 then find D^2y/dx^2 at the point (-1,-2) in simplest form
algol13

Answer:

\frac{d^2y}{dx^2} = \frac{-4}{3}

General Formulas and Concepts:

<u>Pre-Algebra</u>

Order of Operations: BPEMDAS

  1. Brackets
  2. Parenthesis
  3. Exponents
  4. Multiplication
  5. Division
  6. Addition
  7. Subtraction
  • Left to Right

<u>Algebra I</u>

  • Factoring

<u>Calculus</u>

Implicit Differentiation

The derivative of a constant is equal to 0

Basic Power Rule:

  • f(x) = cxⁿ
  • f’(x) = c·nxⁿ⁻¹

Product Rule: \frac{d}{dx} [f(x)g(x)]=f'(x)g(x) + g'(x)f(x)

Chain Rule: \frac{d}{dx}[f(g(x))] =f'(g(x)) \cdot g'(x)

Quotient Rule: \frac{d}{dx} [\frac{f(x)}{g(x)} ]=\frac{g(x)f'(x)-g'(x)f(x)}{g^2(x)}

Step-by-step explanation:

<u>Step 1: Define</u>

-y - 2x³ = y²

Rate of change of tangent line at point (-1, -2)

<u>Step 2: Differentiate Pt. 1</u>

<em>Find 1st Derivative</em>

  1. Implicit Differentiation [Basic Power Rule]:                                                  -y'-6x^2=2yy'
  2. [Algebra] Isolate <em>y'</em> terms:                                                                              -6x^2=2yy'+y'
  3. [Algebra] Factor <em>y'</em>:                                                                                       -6x^2=y'(2y+1)
  4. [Algebra] Isolate <em>y'</em>:                                                                                         \frac{-6x^2}{(2y+1)}=y'
  5. [Algebra] Rewrite:                                                                                           y' = \frac{-6x^2}{(2y+1)}

<u>Step 3: Differentiate Pt. 2</u>

<em>Find 2nd Derivative</em>

  1. Differentiate [Quotient Rule/Basic Power Rule]:                                          y'' = \frac{-12x(2y+1)+6x^2(2y')}{(2y+1)^2}
  2. [Derivative] Simplify:                                                                                       y'' = \frac{-24xy-12x+12x^2y'}{(2y+1)^2}
  3. [Derivative] Back-Substitute <em>y'</em>:                                                                     y'' = \frac{-24xy-12x+12x^2(\frac{-6x^2}{2y+1} )}{(2y+1)^2}
  4. [Derivative] Simplify:                                                                                      y'' = \frac{-24xy-12x-\frac{72x^4}{2y+1} }{(2y+1)^2}

<u>Step 4: Find Slope at Given Point</u>

  1. [Algebra] Substitute in <em>x</em> and <em>y</em>:                                                                     y''(-1,-2) = \frac{-24(-1)(-2)-12(-1)-\frac{72(-1)^4}{2(-2)+1} }{(2(-2)+1)^2}
  2. [Pre-Algebra] Exponents:                                                                                      y''(-1,-2) = \frac{-24(-1)(-2)-12(-1)-\frac{72(1)}{2(-2)+1} }{(2(-2)+1)^2}
  3. [Pre-Algebra] Multiply:                                                                                   y''(-1,-2) = \frac{-48+12-\frac{72}{-4+1} }{(-4+1)^2}
  4. [Pre-Algebra] Add:                                                                                         y''(-1,-2) = \frac{-36-\frac{72}{-3} }{(-3)^2}
  5. [Pre-Algebra] Exponents:                                                                               y''(-1,-2) = \frac{-36-\frac{72}{-3} }{9}
  6. [Pre-Algebra] Divide:                                                                                      y''(-1,-2) = \frac{-36+24 }{9}
  7. [Pre-Algebra] Add:                                                                                          y''(-1,-2) = \frac{-12}{9}
  8. [Pre-Algebra] Simplify:                                                                                    y''(-1,-2) = \frac{-4}{3}
6 0
2 years ago
How can the scaling of a line graph be used to mislead a reader?
Anna [14]
Misleading may be present even t<span>hough all graphs may share the same data, and even the </span>slope<span> of the </span><span>data is the same. If the way the data is plotted is not correct, it can change the visual appearance of the angle made by the line on the graph. This is so because each plot has different scales on its vertical axis. As the scales are not correctly shown then there is where the misleading appears.</span>
5 0
3 years ago
One yard of the fabric costs $5. How much does she pay for all 5 pieces of fabric
solmaris [256]
Assuming a "piece of fabric" is a yard, 5x5 is $25.00.
6 0
3 years ago
Read 2 more answers
A batter hits a baseball 4 feet above the ground with an upward velocity of 59 feet per second. The function h(t) = -16t^2 + 49t
Anit [1.1K]

Answer:

3 seconds

Step-by-step explanation:

when h=7 ft

-16t²+49t+4=7

-16t²+49t-3=0

16t²-49t+3=0

16t^2-48t-t+3=0

16t(t-3)-1(t-3)=0

(t-3)(16t-1)=0

t=3,t=1/16

t=1/16 seconds is the time when it just started.

so reqd.  time=3 seconds.

5 0
3 years ago
A Web music store offers two versions of a popular song. The size of the standard version is 2.1 megabytes (MB). The size of the
SashulF [63]

Answer:

There were 440 Standard version of songs downloaded in Web music store.

Step-by-step explanation:

Given,

Total number of songs downloaded = 1310

Total size of the downloaded songs = 4752 MB

Size of standard version of song = 2.1 MB

Size of high quality version of song = 4.4 MB

Solution,

Let the number of standard version  of song be 'x'.

And also let the number of high quality version of song be 'y'.

Now, total number of songs is the sum of total number of standard version  of song and total number of high quality version of song.

On framing the above sentence in equation form, we get;

x+y=1310\ \ \ \ \ equation\ 1

Now, Total size of the downloaded songs is the sum of total number of standard version of song multiplied with size of standard version  of song and total number of high quality version of song multiplied with size of high quality version of song.

On framing the above sentence in equation form, we get;

2.1x+4.4y=4752

Multiplying with 10 on both side, we get;

10(2.1x+4.4y)=4752\times10\\\\21x+44y=47520\ \ \ \ equation\ 2

Now multiplying equation 1 by 21, we get;

21(x+y)=1310\times21`\\\\21x+21y=27510\ \ \ \ equation\ 3

Now subtract equation 3 from equation 2, we get;

(21x+44y)-(21x+21y)=47520-27510\\\\21x+44y-21x-21y=20010\\\\23y=20010\\\\y=\frac{20010}{23}\\\\y=870

On substituting the value of y in equation 1, we get the value of x;

x+y=1310\\\\x+870=1310\\\\x=1310-870=440

Hence There were 440 Standard version of songs downloaded in Web music store.

7 0
3 years ago
Other questions:
  • If a seamstress is paid $7.85 per hour and works 18.75 hours in one week, how much is she paid for that week?
    11·2 answers
  • Calculate the unknown angles.
    8·1 answer
  • If Ana devotes all her time to making fudge, she can make 3 pounds of fudge an hour, and if he devotes all her time to making to
    5·1 answer
  • A water tank is 3/4 full.
    11·1 answer
  • the cost of 6 sandwhiches and 4 drinks is $53. the cost of 4 sandwhiches and 6 drinks is $47. how much does one sandwhich cost
    10·1 answer
  • What is the distance between the points (-4, 2) and (1, -3) on the coordinate plane?
    11·1 answer
  • Which statements are always true? Check all that apply.
    5·2 answers
  • in the first quarter of the game the Giants gained 5 yards lost 13 yards gained 2 yards gained 6 yards and unfortunately lost 12
    15·1 answer
  • The table below represents a linear function f(x) and the equation represents a function g(x):
    6·1 answer
  • Photo attached <br><br> A. -2<br> B. -1<br> C. 1/-2<br> D. 1/2
    14·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!