Y=a(x-h)^2+k
vertex form is basically completing the square
what you do is
for
y=ax^2+bx+c
1. isolate x terms
y=(ax^2+bx)+c
undistribute a
y=a(x^2+(b/a)x)+c
complete the square by take 1/2 of b/a and squaring it then adding negative and postive inside
y=a(x^2+(b/a)x+(b^2)/(4a^2)-(b^2)/(4a^2))+c
complete square
too messy \
anyway
y=2x^2+24x+85
isolate
y=(2x^2+24x)+85
undistribute
y=2(x^2+12x)+85
1/2 of 12 is 6, 6^2=36
add neagtive and postivie isnde
y=2(x^2+12x+36-36)+85
complete perfect square
y=2((x+6)^2-36)+85
distribute
y=2(x+6)^2-72+85
y=2(x+6)^2+13
vertex form is
y=2(x+6)^2+13
Sry I don’t know try Socratic
Answer:
The value to be added to the polynomial x³ - 6·x² + 11·x + 8 so that it is completely divisible by 1 - 3·x + x² is -(x + 11)
Step-by-step explanation:
By long division, we have;
= x - 3
-(x³ - 3·x² + x)
-3·x² + 10·x + 8
-(-3·x² + 9·x -3)
x + 11
Therefore, -(x + 11) should be added to the polynomial x³ - 6·x² + 11·x + 8 so that it is completely divisible by 1 - 3·x + x².
That is (x³ - 6·x² + 11·x + 8 - x - 11) ÷ (1 - 3·x + x²) = x - 3.
The answer should be 390=60s, assuming s is the number of shelves he would need.
By the way, if you want the answer using this formula:
390=60s
390/60=s
6.5=s
s=6.5