Answer:
The linear equation that gives the rule of the table is f(x) = x + 25
The linear equation can be represented in a slope intercept form as follows:
y = mx + b
where
m = slope
b = y-intercept
Therefore,
Using the table let get 2 points
(2, 27)(3, 28)
let find the slope
m = 28 - 27 / 3 -2 = 1
let's find b using (2, 27)
27 = 2 + b
b = 25
Therefore,
y = x + 25
f(x) = x + 25
Step-by-step explanation:
18 or 3 * 6 because to find out how many possible contengencys you muktiplyy the factors.
Answer:
Step-by-step explanation:
A parallel line will have the same slope as the reference line. In this case, I don't see the "given line" as promised in the question. If it does appear, and it looks like y = 5x + 3, for example, the slope is 5 and the new line will have the same slope.
<h3>
<u>If this slope is correct</u>, we can start the equation for the parallel line that goes through point (-3,2) by starting with:</h3><h3 /><h3>y = 5x + b</h3><h3 /><h3>We need a value of b that forces the line to go through point (-3,2). We can do that by using the given point in the equation and solving for b:</h3><h3>y = 5x + b</h3><h3>2 = 5(-3) + b</h3><h3>b = 17</h3><h3 /><h3>The parallel line to y=5x+3 is</h3><h3>y = 5x + 17</h3><h3 /><h3>See attachment.</h3><h3 /><h3 /><h3 />
Yes you can. The quadrilateral that you would get is called parallelogram. It has 2 paris of parallel lines. and 2 pairs of equal angles. one pair is angles that are less than 90 degrees and other one is where 2 angles are greater than 90 degrees each. Therefore there isnt any right angle there and you got yourself quadrilateral. of these 2 parallel lines are of equal lenght than you get something called rhombus.
Answer:
The relationship is not a function
Step-by-step explanation: