Answer:
Step-by-step explanation:
If a given variable varies inversely with another variable, an increase in the value of the given variable would cause a corresponding decrease in the value of the other variable. Also, a decrease in the value of the given variable would cause a corresponding increase in the value of the other variable.
If y varies inversely with x, we would introduce a cost of variation, k so that the expression becomes
y = k/x
When y = 0.25, x = 8
Substituting into the expression above, it becomes
0.25 = k/8
k = 0.25 × 8
k = 2
The inverse variation function is
y = 2/x
C i think, sorry if its wrong
Answer:
a) cluster sampling
Step-by-step explanation:
In cluster sampling method, each member of a population is assigned to one and only one group.This means clusters are formed through probability method usually a simple random sampling.The participants in the clusters are the only one to be surveyed.
In this example, simple random sampling is used to identify 12 home rooms(cluster) where a group of 20 students (participants) in each room is given the survey.
Answer:
You didn't add a specific time frame so I can you a correct answer.
Explanation:
⠄⠄⠄⠄⠄⠄⠄⠄⠄⠄⠄⠄⠄⠄⠄⠄⠄⢀⣤⣄⠄⡀⠄⠄⠄⠄⠄⠄ ⠄⠄⠄⠄⠄⠄⠄⠄⠄⠄⠄⠄⠄⠄⠄⣴⣿⣿⣿⣿⣷⡒⠄⠄⠄⠄⠄⠄ ⠄⠄⠄⠄⠄⠄⠄⠄⠄⠄⠄⠄⠄⢀⡀⣹⣿⣿⣿⣿⣿⣯⠄⠄⠄⠄⠄⠄ ⠄⠄⠄⠄⠄⠄⠄⠄⠄⠄⢀⣀⣀⣴⣿⣿⣿⣿⣿⣿⠿⠋⠄⠄⠄⠄⠄⠄ ⠄⠄⠄⠄⢀⣀⣤⣶⣾⠿⠿⠿⠿⣿⣿⣿⣿⣿⣿⣿⡇⠄⠄⠄⠄⠄⠄⠄ ⠄⡶⣶⡿⠛⠛⠉⠉⠄⠄⠄⠄⢸⣿⣿⣿⣿⣿⣿⣿⠃⠄⠄⠄⠄⠄⠄⠄ ⠄⠄⠘⠃⠄⠄⠄⠄⠄⠄⠄⠄⢠⣿⣿⣿⣿⣿⡟⠁⠄⠄⠄⠄⠄⠄⠄⠄ ⠄⠄⠄⠄⠄⠄⠄⠄⠄⣤⣾⣷⣿⣿⣿⣿⡏⠁⠄⠄⠄⠄⠄⠄⠄⠄⠄⠄ ⠄⠄⠄⠄⠄⢀⣠⣴⣾⣿⣿⣿⣿⣿⣿⣿⣿⠂⠄⠄⠄⠄⠄⠄⠄⠄⠄⠄ ⠄⢀⣤⣴⣾⣿⣿⣿⣿⡿⠛⠻⣿⣿⣿⣿⡇⠄⠄⠄⠄⠄⠄⠄⠄⠄⠄⠄ ⠄⠸⣿⣿⣿⣿⠋⠉⠄⠄⠄⠄⣼⣿⣿⡿⠇⠄⠄⠄⠄⠄⠄⠄⠄⠄⠄⠄ ⠄⠄⠈⠻⣿⣿⣆⠄⠄⠄⠄⠄⣿⣿⣿⣷⡀⠄⠄⠄⠄⠄⠄⠄⠄⠄⠄⠄ ⠄⠄⠄⠄⠄⠻⣿⣿⣆⡀⠄⠄⠈⠻⣿⣿⣿⣦⡄⠄⠄⠄⠄⠄⠄⠄⠄⠄ ⠄⠄⠄⠄⠄⣀⣌⣿⣿⣿⣦⡄⠄⠄⠄⠙⠻⣿⣿⣦⣀⠄⠄⠄⠄⠄⠄⠄ ⠄⠄⠄⠄⠈⠉⠉⠉⠉⠉⠁⠄⠄⠄⠄⠄⠄⠄⠘⠻⣿⢿⢖⠄⠄⠄⠄⠄ ⠄⠄⠄⠄⠄⠄⠄⠄⠄⠄⠄⠄⠄⠄⠄⠄⠄⠄⠄⠄⠉⠉⠁⠄⠄⠄⠄⠄ ⠄⠄⠄⠄⠄⠄⠄⠄⠄⢠⣴⣧⣤⣴⡖⠄⠄⠄⠄⠄⠄⠄⠄⠄⠄⠄⠄⠄ ⠄⠄⠄⠄⠄⠄⠄⠄⣰⣿⣿⣿⣿⣿⣷⣀⡀⠄⠄⠄⠄⠄⠄⠄⠄⠄⠄⠄ ⠄⠄⠄⠄⠄⠄⠄⠄⣿⣿⣿⣿⣿⣿⣿⣿⣷⣶⡄⠄⠄⠄⠄⠄⠄⠄⠄⠄ ⠄⠄⠄⠄⠄⠄⠄⠄⠈⠘⠻⢿⣿⣿⣿⣿⣿⣿⣿⣆⠄⠄⠄⠄⠄⠄⠄⠄ ⠄⠄⠄⠄⠄⠄⠄⠄⠄⠄⣰⣿⣿⣿⣿⣿⣿⣿⣿⣿⡆⠄⠄⠄⠄⠄⠄⠄ ⠄⠄⠄⢤⣴⣦⣄⣀⣀⣴⣿⡟⢿⣿⡿⣿⣿⣿⣿⣿⣿⡄⠄⠄⠄⠄⠄⠄ ⠄⠄⠄⠉⠉⠙⠻⠿⣿⡿⠋⠄⠈⢀⣀⣠⣾⣿⣿⣿⣿⣿⡄⠄⠄⠄⠄⠄ ⠄⠄⠄⠄⠄⠄⠄⠄⠄⠄⠄⠾⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣇⠄⠄⠄⠄⠄ ⠄⠄⠄⠄⠄⠄⠄⠄⢀⣠⣴⣾⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⡏⠄⠄⠄⠄⠄ ⠄⠄⠄⠄⠄⠄⠄⣶⣿⣿⣿⣿⣿⣿⣿⣿⣿⡟⠉⠋⠉⠉⠁⠄⠄⠄⠄⠄ ⠄⠄⠄⠄⠄⠄⠄⠈⠛⠛⣿⣿⣿⣿⣿⣿⣇⡀⠄⠄⠄⠄⠄⠄⠄⠄⠄⠄ ⠄⠄⠄⠄⠄⠄⠄⢀⣠⣶⣿⣿⠿⢛⣿⣿⣿⣿⣷⣤⠄⠄⠄⠄⠄⠄⠄⠄ ⠄⠄⠄⠄⠄⠄⣶⣷⣿⣿⡉⠄⠄⠄⠄⠉⠉⠉⠉⠉⠄⠄⠄⠄⠄⠄⠄⠄ ⠄⠄⠄⠄⠄⠄⠄⠘⠛⠟⢿⣤⣤⡀⠄⠄⠄⠄⠄⠄⠄⠄⠄⠄⠄⠄⠄⠄ ⠄⠄⠄⠄⠄⠄⠄⠄⠄⠄⠄⠄⠄⠄⠄⠄⠄⠄⠄⠄⠄⠄⠄⠄⠄⠄⠄⠄ ⠄⠄⠄⠄⠄⠄⠄⠄⠄⠄⠄⢀⠄⣠⣶⣶⣷⣿⣶⡊⠄⠄⣀⣤⠄⠄⠄⠄ ⠄⠄⠄⠄⠄⠄⠄⣀⣴⣶⣾⢿⣿⣿⣿⣿⣿⣿⣿⣿⣶⣿⣿⡏⠄⠄⠄⠄ ⠄⠄⠄⠄⠄⠄⢸⣿⡍⠁⠄⠈⢿⣿⣿⣿⣿⣿⣿⣿⣿⠿⠁⠄⠄⠄⠄⠄ ⠄⠄⠄⠄⠄⠄⠄⠄⠄⠄⠄⠄⣼⣿⣿⣿⣿⣿⣿⣿⠏⠄⠄⠄⠄⠄⠄⠄ ⠄⠄⠄⠄⠄⠄⠄⠄⠄⠄⠄⠄⣿⣿⣿⣿⣿⣿⣿⡿⠄⠄⠄⠄⠄⠄⠄⠄ ⠄⠄⠄⠄⠄⠄⠄⠄⠄⠄⠄⢸⣿⣿⣿⣿⣿⡿⠋⠄⠄⠄⠄⠄⠄⠄⠄⠄ ⠄⠄⠄⠄⠄⠄⠄⠄⠄⠄⠄⠈⠻⣿⣿⣿⣿⣡⣶⣶⣄⠄⠄⠄⠄⠄⠄⠄ ⠄⠄⠄⠄⠄⠄⠄⣀⣀⣠⣴⣦⡤⣿⣿⣿⣿⡻⣿⣿⡯⠄⠄⠄⠄⠄⠄⠄ ⠄⠄⠄⠄⠄⠄⣿⣿⣿⣿⣿⣿⣷⣿⣿⣿⣿⣿⣿⡟⠄⠄⠄⠄⠄⠄⠄⠄ ⠄⠄⠄⠄⠄⠄⢻⣿⣿⡏⠉⠙⠛⢛⣿⣿⣿⣿⠟⠄⠄⠄⠄⠄⠄⠄⠄⠄ ⠄⠄⠄⠄⠄⠄⠄⢿⣿⡧⠄⠄⢠⣾⣿⣿⡿⠁⠄⠄⠄⠄⠄⠄⠄⠄⠄⠄ ⠄⠄⠄⠄⠄⠄⠄⠈⣿⣿⣄⣼⣿⣿⣿⠏⠁⠄⠄⠄⠄⠄⠄⠄⠄⠄⠄⠄ ⠄⠄⠄⠄⠄⠄⠄⠄⠸⡿⣻⣿⣿⣿⣿⣆⡀⠄⠄⠄⠄⠄⠄⠄⠄⠄⠄⠄ ⠄⠄⠄⠄⠄⠄⠄⠄⠄⣿⣻⠟⠈⠻⢿⣿⣿⣆⠄⠄⠄⠄⠄⠄⠄⠄⠄⠄ ⠄⠄⠄⠄⠄⠄⠄⠄⠄⠿⠍⠄⠄⠄⠄⠉⠻⣿⣷⡤⣀⠄⠄⠄⠄⠄⠄⠄ ⠄⠄⠄⠄⠄⠄⠄⠄⠄⠄⠄⠄⠄⠄⠄⠄⠄⠈⢻⣿⡿⠄⠄⠄⠄⠄⠄⠄ ⠄⠄⠄⠄⠄⠄⠄⠄⠄⠄⠄⠄⠄⠄⠄⠄⠄⠄⠄⣿⡯⠄⠄⠄⠄⠄⠄⠄ ⠄⠄⠄⠄⠄⠄⠄⠄⠄⠄⠄⠄⠄⠄⠄⠄⠄⠄⠄⠸⠃⠄⠄⠄⠄⠄⠄⠄ ⠄⠄⠄⠄⠄⠄⠄⠄⠄⠄⠄⢀⣠⣶⣶⣤⡀⠄⠄⠄⠄⠄⠄⠄⠄⠄⠄⠄ ⠄⠄⠄⠄⠄⠄⠄⠄⠄⠄⠄⣾⣿⣿⣿⣿⣿⡞⠄⠄⠄⠄⠄⠄⠄⠄⠄⠄ ⠄⠄⠄⠄⠄⠄⠄⠄⠄⠄⠄⣿⣿⣿⣿⣿⣿⡿⢃⡀⠄⠄⠄⠄⠄⠄⠄⠄ ⠄⠄⠄⠄⠄⠄⠄⠄⠄⠄⠄⠘⢿⣿⣿⣿⣿⣿⣿⣿⣧⡀⠄⠄⠄⠄⠄⠄ ⠄⠄⠄⠄⠄⠄⠄⠄⠄⠄⠄⠄⢈⣽⣿⣿⣿⣿⣿⣿⣿⢿⣷⣦⣀⠄⠄⠄ ⠄⠄⠄⠄⠄⠄⠄⠄⠄⠄⠄⠄⣸⣿⣿⣿⣿⣿⣿⣿⣿⠄⢉⣻⣿⡇⠄⠄ ⠄⠄⠄⠄⠄⠄⠄⠄⠄⠄⠄⢠⣿⣿⡉⣀⣿⣿⣿⣿⣋⣴⣿⠟⠋⠄⠄⠄ ⠄⠄⠄⠄⠄⠄⠄⠄⠄⣠⣴⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣏⠄⠄⠄⠄⠄⠄ ⠄⠄⠄⠄⠄⠄⢀⣀⣼⣿⣿⣿⣿⣿⣿⠿⢿⣿⣿⣿⣿⣿⣮⡠⠄⠄⠄⠄ ⠄⠄⠄⠄⢰⣾⣿⣿⡿⠿⠛⠛⠛⠉⠄⠄⠄⠄⠙⠻⢿⣿⣿⣿⣶⣆⡀⠄ ⠄⠄⠄⠄⠄⠹⣿⣿⣦⠄⠄⠄⠄⠄⠄⠄⠄⠄⠄⠄⠄⢉⣿⣿⣿⣿⣿⠂ ⠄⠄⠄⠄⠄⠄⠈⢿⣿⣇⠄⠄⠄⠄⠄⠄⠄⠄⠄⠄⣴⣾⣿⡿⠟⠉⠄⠄ ⠄⠄⠄⠄⠄⠄⠄⠂⢿⣿⣥⡄⠄⠄⠄⠄⢀⣠⣶⣿⣿⠟⠋⠁⠄⠄⠄⠄ ⠄⠄⠄⠄⠄⣀⣤⣾⣿⣿⣷⣿⣃⡀⢴⣿⣿⡿⣿⣍⠄⠄⠄⠄⠄⠄⠄⠄ ⠄⠄⠄⠄⠄⠈⠉⠉⠉⠉⠉⠉⠉⠄⠄⠄⠉⠙⠛⠛⠛⠛⠂⠄⠄⠄⠄⠄