Answer:
![\displaystyle V = \pi \int _0^{16}\left[10-\left(\frac{1}{8}y-2\right)\right] ^2 - \left[10 - \left(2+y^{{}^{1}\!/\!{}_{4}}\right)\right]^2\, dy](https://tex.z-dn.net/?f=%5Cdisplaystyle%20V%20%3D%20%5Cpi%20%5Cint%20_0%5E%7B16%7D%5Cleft%5B10-%5Cleft%28%5Cfrac%7B1%7D%7B8%7Dy-2%5Cright%29%5Cright%5D%20%5E2%20-%20%5Cleft%5B10%20-%20%5Cleft%282%2By%5E%7B%7B%7D%5E%7B1%7D%5C%21%2F%5C%21%7B%7D_%7B4%7D%7D%5Cright%29%5Cright%5D%5E2%5C%2C%20dy)
Step-by-step explanation:
We want to find the volume of the solid obtained by rotating the region between the two curves:

About the line <em>x</em> = 16.
Since our axis of revolution is vertical, we can use the washer method in terms of <em>y</em>.
![\displaystyle V = \pi \int _c^d[R(y)]^2 -[r(y)}]^2\, dy](https://tex.z-dn.net/?f=%5Cdisplaystyle%20V%20%3D%20%5Cpi%20%5Cint%20_c%5Ed%5BR%28y%29%5D%5E2%20-%5Br%28y%29%7D%5D%5E2%5C%2C%20dy)
Where R(y) is the outer radius and r(y) is the inner radius.
First, solve each equation in terms of <em>y: </em>
<em />
<em />
<em />
From the diagram below, we can see that the outer radius R(y) is (10 - <em>x</em>₁) and that the inner radius r(y) is (10 - <em>x</em>₂). The limits of integration will be from <em>y</em> = 0 to <em>y</em> = 16. Substitute:
![\displaystyle V = \pi \int_0^{16}\left[\underbrace{10-\left(\frac{1}{8}y+2\right)}_{R(y)}\right]^2 - \left[\underbrace{10-\left(y^{{}^{1}\!/\!{}_{4}}+2\right)}_{r(y)}\right]^2\, dy](https://tex.z-dn.net/?f=%5Cdisplaystyle%20V%20%3D%20%5Cpi%20%5Cint_0%5E%7B16%7D%5Cleft%5B%5Cunderbrace%7B10-%5Cleft%28%5Cfrac%7B1%7D%7B8%7Dy%2B2%5Cright%29%7D_%7BR%28y%29%7D%5Cright%5D%5E2%20-%20%5Cleft%5B%5Cunderbrace%7B10-%5Cleft%28y%5E%7B%7B%7D%5E%7B1%7D%5C%21%2F%5C%21%7B%7D_%7B4%7D%7D%2B2%5Cright%29%7D_%7Br%28y%29%7D%5Cright%5D%5E2%5C%2C%20dy)
Thus, our volume is:
![\displaystyle V = \pi \int _0^{16}\left[10-\left(\frac{1}{8}y-2\right)\right] ^2 - \left[10 - \left(2+y^{{}^{1}\!/\!{}_{4}}\right)\right]^2\, dy](https://tex.z-dn.net/?f=%5Cdisplaystyle%20V%20%3D%20%5Cpi%20%5Cint%20_0%5E%7B16%7D%5Cleft%5B10-%5Cleft%28%5Cfrac%7B1%7D%7B8%7Dy-2%5Cright%29%5Cright%5D%20%5E2%20-%20%5Cleft%5B10%20-%20%5Cleft%282%2By%5E%7B%7B%7D%5E%7B1%7D%5C%21%2F%5C%21%7B%7D_%7B4%7D%7D%5Cright%29%5Cright%5D%5E2%5C%2C%20dy)
*I labeled the diagram incorrectly. Let R(x) be R(y) and r(x) be r(y).